\(1,\dfrac{2x+4}{7}=\dfrac{4x-2}{15}=\dfrac{2.\left(2x+4\right)}{2.7}=\dfrac{4x+8}{14}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{2x+4}{7}=\dfrac{4x-2}{15}==\dfrac{4x+8}{14}=\dfrac{\left(4x+8\right)-\left(4x-2\right)}{14-15}=\dfrac{10}{-1}=-10\)
\(\Rightarrow\dfrac{2x+4}{7}=-10\)
\(\Rightarrow2x+4=-10.7=-70\)
\(\Rightarrow2x=-70+4=-66\)
\(\Rightarrow x=-66:2=-33\)
Vậy \(x=-33\)
\(2,\dfrac{2x+3}{5}=\dfrac{7x-3}{15}=\dfrac{7.\left(2x+3\right)}{7.5}=\dfrac{2.\left(7x-3\right)}{2.15}=\dfrac{14x+21}{35}=\dfrac{14x-6}{30}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{2x+3}{5}=\dfrac{14x+21}{35}=\dfrac{14x-6}{30}=\dfrac{\left(14x+21\right)-\left(14x-6\right)}{35-30}=\dfrac{29}{5}\)
\(\Rightarrow\dfrac{2x+3}{5}=\dfrac{29}{5}\)
\(\Rightarrow2x+3=29\)
\(\Rightarrow2x=29-3=26\)
\(\Rightarrow x=26:2=13\)
\(3,\dfrac{11x-2}{7x+5}=\dfrac{11}{8}\)
\(\Rightarrow\dfrac{11x-2}{11}=\dfrac{7x+5}{8}=\dfrac{7.\left(11x-2\right)}{7.11}=\dfrac{11.\left(7x+5\right)}{8.11}=\dfrac{77x-14}{77}=\dfrac{77x+55}{88}=\dfrac{\left(77x+55\right)-\left(77x-14\right)}{88-77}=\dfrac{69}{11}\)
\(\Rightarrow\dfrac{11x-2}{11}=\dfrac{69}{11}\)
\(\Rightarrow11x-2=69\)
\(\Rightarrow11x=69+2=71\)
\(\Rightarrow x=\dfrac{71}{11}\)