Cung và góc liên kết

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quỳnh

1/Chứng minh rằng :

a/ cot\(^2\)x \(-cos^2x=cot^2x.cos^2x\)

b/ \(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=2tan2x\)

c/ \(\frac{sin4x+cos2x}{1+sin2x-cos4x}=cot2x\)

2/ Rút gọn biểu thức

A=\(sin^3+sin^2xcosx+sinxcos^2x+cos^3x\)

B=\(tanx\left(\frac{1+cos^2x}{sinx}-sinx\right)\)

Nguyễn Việt Lâm
29 tháng 5 2020 lúc 21:42

\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)

\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)

\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)

\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)

\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)

\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)


Các câu hỏi tương tự
Khang Trinh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ll
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phan hữu Dũng
Xem chi tiết
CAO Thị Thùy Linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết