cho hinh thang ABCD ( AB // CD ) có M là giao của AD và BC, N là giao điểm của 2 đường chéo. Gọi I và K lần lượt là giao điểm của MN với AB và CD. CMR: I là trung điểm của AB, K là trung điểm của CD
Bài 4 (3,0 điểm) Cho ∆ABC cân tại A. Gọi M và N lần lượt là trung điểm của cạnh AB và cạnh AC.
1) Chứng minh BC = 2MN.
2) Chứng minh tứ giác MNCB là hình thang cân.
3) Gọi I, K lần lượt là trung điểm của MN và BC. O là giao điểm của MC và NB. Chứng minh: A, I, O, K thẳng hàng.
Cho ΔABC nhọn; M,N lần lượt là trung điểm của AB và AC.Gọi AH là đường cao (HϵBC). Đoản thẳng MN cắt AH tại K.
a) C/m tg MNCB là hình thang
b) C/m tg KNCH là hình thang
c) Tg KHBM là hình thang vuông
Cho tam giác ABC có BC = 8cm, đường trung tuyến BD, CE. Gọi M, N lần lượt là trung điểm của BE, CD. MN cắt BD và CE lần lượt tại I và K.
a. Tính DE, MN
b. CM MI = IK = KN
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).1)Chứng minh tam giác ADH bằng tam giác BCK. 2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.3)Giảsử2ABCDBK+=.Tính góc tạo bởi hai đường chéo của hình thang.
Cho hình thang cân ABCD có AB // CDvà AB < CD. Kẻđường cao AH, BKcủa hình thang ABCD(H, K thuộc CD).
1)Chứng minh tam giác ADH bằng tam giác BCK.
2)Gọi O là giao điểm của AC và BD; I là giao điểm của AD và BC. Chứng minh OI là trung trực của AB.
3)Giảsử BK=(AB+CD)/2.Tính góc tạo bởi hai đường chéo của hình thang.
Cho tam giác ABC có đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D. a) Chứng minh tứ giác AEBM là hình bình hành. b) Gọi I là trung điểm của AM. Chứng minh điểm E đối xứng với C qua I.
Cho hình thang ABCD (AB //CD ).Các tia p/g của góc A và D cắt nhau ở I .Gọi M là trung điểm của A. a) CM tam giác AMI cân b)CM tam giác AID vuông.
cho hình thang ABCD (AB//CD). Gọi E là trung điểm của AB, F là trung điểm của CD, O là trung điểm của EF. Qua O kẻ đường thẳng song song vs CD, cắt AD và BC theo thứ tự ở M và N