P(x)+Q(x)=(5x3-+7x4+8x2)+(8x2-5x-3x3+x4)
= 5x3-7x4+8x2+8x2-5x-3x3+x4
=(5x3-3x3)+(-7x4+x4)+(8x2+8x2)-5x
=2x3-6x4+16x2-5x
P(x)-Q(x)=(5x3-+7x4+8x2)-(8x2-5x-3x3+x4)
= 5x3-+7x4+8x2-8x2+5x+3x3-x4
=(5x3+3x3)+(-7x4_x4)+(8x2-8x2)+5x
= 8x3-8x4+5x
*Cách 1: Hàng ngang:
P(x) - Q(x) = (5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\)) - (8x\(^2\) - 5x - 3x\(^3\) + x\(^4\) - \(\dfrac{2}{3}\))
= 5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\) - 8x\(^2\) + 5x + 3x\(^3\) - x\(^4\) +\(\dfrac{2}{3}\)
= (5x\(^3\) + 3x\(^3\)) + (-\(\dfrac{1}{3}\) + \(\dfrac{2}{3}\)) + (7x\(^4\) - x\(^4\)) + (8x\(^2\) - 8x\(^2\)) + 5x
= 8x\(^3\) + \(\dfrac{1}{3}\) + 6x\(^4\) + 5x
Vậy P(x) - Q(x) = 8x\(^3\) + \(\dfrac{1}{3}\) + 6x\(^4\) + 5x
*Cách 2: Hàng dọc:
P(x) = 7x\(^4\) + 5x\(^3\) + 8x\(^2\) + 0x - \(\dfrac{1}{3}\)
-
Q(x) = x\(^4\) - 3x\(^3\) + 8x\(^2\) - 5x - \(\dfrac{2}{3}\)
Hay: P(x) = 7x\(^4\) + 5x\(^3\) + 8x\(^2\) + 0x - \(\dfrac{1}{3}\)
+
[-Q(x)] = -x\(^4\) + 3x\(^3\) - 8x\(^2\) + 5x + \(\dfrac{2}{3}\)
___________________________________________
P(x) - Q(x) = 6x\(^4\) + 8x\(^3\) + 5x - \(\dfrac{1}{3}\)
Vậy P(x) - Q(x) = 6x\(^4\) + 8x\(^3\) + 5x - \(\dfrac{1}{3}\)
P(x) = 5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\)
Q(x) = 8x\(^2\) - 5x - 3x\(^3\) + x\(^4\) \(-\dfrac{2}{3}\)
*Cách 1: Hàng ngang:
P(x) + Q(x) = (5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\)) + (8x\(^2\) - 5x - 3x\(^3\) + x\(^4\) \(-\dfrac{2}{3}\))
= 5x\(^3\) - \(\dfrac{1}{3}\) + 7x\(^4\) + 8x\(^2\) + 8x\(^2\) - 5x - 3x\(^3\) + x\(^4\) - \(\dfrac{2}{3}\)
= ( 5x\(^3\) - 3x\(^3\) ) + ( \(-\dfrac{1}{3}\) - \(\dfrac{2}{3}\) ) + ( 7x\(^4\) + x\(^4\) ) + ( 8x\(^2\) + 8x\(^2\) ) - 5x
= 2x\(^3\) - 1 + 8x\(^4\) + 16x\(^2\) - 5x
Vậy P(x) + Q(x) = 2x\(^3\) - 1 + 8x\(^4\) + 16x\(^2\) - 5x
*Cách 2: Hàng dọc:
P(x) = 7x\(^4\) + 5x\(^3\) + 8x\(^2\) + 0x - \(\dfrac{1}{3}\)
+
Q(x) = x\(^4\) - 3x\(^3\) + 8x\(^2\) - 5x - \(\dfrac{2}{3}\)
__________________________________
P(x) + Q(x) = 8x\(^4\) - 2x\(^3\) + 16x\(^2\) - 5x - 1