Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thùy Dương

1/Cho \(\dfrac{a}{b}=\dfrac{c}{d}\left(b\ne0;d\ne0\right)\)chứng tỏ rằng\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{a.c}{b.d}\)

2/Tìm x, y thỏa mãn:\(\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)

3/Tìm các số a, b, c biết \(\dfrac{1}{2}a=\dfrac{2}{3}b=\dfrac{3}{4}c\) và a - b =15

4/Chứng minh M=3x+1+3x+2+3x+3+ . . . +3x+100 chia hết cho 120(x ∈ N)

Giúp mình vs mình đg gấp. Trả lời 1 câu cx đc mình sẽ tick

Nguyễn Thị Bích Thủy
21 tháng 12 2017 lúc 19:34

1. Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) \(\left(1\right)\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) \(\left(2\right)\)
Từ \(\left(1\right)\text{và (2)}\) \(\Rightarrow\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{ac}{bd}\)
2. \(\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
\(\left\{{}\begin{matrix}\left|5-\dfrac{3}{4}x\right|\ge0\\\left|\dfrac{2}{7}y+3\right|\ge0\end{matrix}\right.\Rightarrow\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|\ge0\)
\(\text{Mà }\left|5-\dfrac{3}{4}x\right|+\left|\dfrac{2}{7}y+3\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|5-\dfrac{3}{4}x\right|=0\\\left|\dfrac{2}{7}y+3\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5-\dfrac{3}{4}x=0\\\dfrac{2}{7}y+3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{4}x=5\\\dfrac{2}{7}x=-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{20}{3}\\y=-\dfrac{21}{2}\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}x=\dfrac{20}{3}\\y=-\dfrac{21}{2}\end{matrix}\right.\)

Nguyễn Thị Bích Thủy
21 tháng 12 2017 lúc 19:44

3. \(\dfrac{1}{2}a=\dfrac{2}{3}b=\dfrac{3}{4}c\)

\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}\)
\(\text{Mà }a-b=15\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{4}{3}}=\dfrac{a-b}{2-\dfrac{3}{2}}=\dfrac{15}{\dfrac{1}{2}}=30\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=30\Rightarrow a=30.2=60\\\dfrac{b}{\dfrac{3}{2}}=30\Rightarrow b=30.\dfrac{3}{2}=45\\\dfrac{c}{\dfrac{4}{3}}=30\Rightarrow c=30.\dfrac{4}{3}=40\end{matrix}\right.\)
\(\text{Vậy }\left\{{}\begin{matrix}a=60\\b=45\\c=40\end{matrix}\right.\)

 Mashiro Shiina
22 tháng 12 2017 lúc 5:52

Ủng hộ bài 4 đây :V

\(M=3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)

\(M=3^x.3^1+3^x.3^2+3^x.3^3+...+3^x.3^{100}\)

\(M=3^x\left(3^1+3^2+3^3+...+3^{100}\right)\)

Đặt: \(T=3^1+3^2+3^3+...+3^{100}\)

\(T=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(T=1\left(3^1+3^2+3^3+3^4\right)+3^4\left(3^1+3^2+3^3+3^4\right)+...+3^{96}\left(3^1+3^2+3^3+3^4\right)\)

\(T=\left(1+3^4+...3^{96}\right)\left(3^1+3^2+3^3+3^4\right)=120\left(1+3^4+...+3^{96}\right)⋮120\)

\(\Rightarrow M⋮120\left(đpcm\right)\)


Các câu hỏi tương tự
Jin Yi Hae
Xem chi tiết
Mikie Manako Trang
Xem chi tiết
FAIRY TAIL
Xem chi tiết
Trịnh Diệu Linh
Xem chi tiết
Triều Nguyễn Quốc
Xem chi tiết
Nguyễn Ngọc Hà
Xem chi tiết
Yến Nguyễn
Xem chi tiết
Lê Hoàng Như Quỳnh
Xem chi tiết
Tôi là ...?
Xem chi tiết