Ta có:
+\(\dfrac{1}{a}+\dfrac{2}{2b+1}+\dfrac{3}{3c+2}\ge2\)
\(\Rightarrow\dfrac{1}{a}\ge\dfrac{2b-1}{2b+1}+\dfrac{3c-1}{3c+2}\ge2\sqrt{\dfrac{\left(2b-1\right)\left(3c-1\right)}{\left(2b+1\right)\left(3c+2\right)}}\left(1\right)\)
+\(\dfrac{1}{a}+\dfrac{2}{2b+1}+\dfrac{3}{3c+2}\ge2\)
\(\Rightarrow\dfrac{2}{2b+1}\ge\dfrac{a-1}{a}+\dfrac{3c-1}{3c+2}\ge2\sqrt{\dfrac{\left(a-1\right)\left(3c-1\right)}{a\left(3c+2\right)}}\left(2\right)\)
+\(\dfrac{1}{a}+\dfrac{2}{2b+1}+\dfrac{3}{3c+2}\ge2\)
\(\Rightarrow\dfrac{3}{3c+2}\ge\dfrac{a-1}{a}+\dfrac{2b-1}{2b+1}\ge2\sqrt{\dfrac{\left(a-1\right)\left(2b-1\right)}{a\left(2b+1\right)}}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow6\ge8\left(a-1\right)\left(2b-1\right)\left(3c-1\right)\)
\(\Rightarrow P=\left(a-1\right)\left(2b-1\right)\left(3c-1\right)\le\dfrac{3}{4}\)
\(\Rightarrow P_{max}=\dfrac{3}{4}\) đạt tại \(a=\dfrac{3}{2};b=1;c=\dfrac{5}{6}\)