\(b=x^6+x^5+x^4+x^3+x+17\)
\(b=x^6+x^5+x^4+x^3+x+1+16\)
\(b=\left(x^6+x^5\right)+\left(x^4+x^3\right)+\left(x+1\right)+16\)
\(b=x^5\left(x+1\right)+x^3\left(x+1\right)+1\left(x+1\right)+16\)
\(b=\left(x^5+x^3+1\right)\left(x+1\right)+16\)
\(b=10\left(9^5+9^3+1\right)+16\)
\(c=\left(x+3\right)\left(x-2\right)-x\left(x+1\right)\)
\(c=\left(x^2-2x+3x-6\right)-\left(x^2+x\right)\)
\(c=\left(x^2+x-6\right)-\left(x^2+x\right)\)
\(c=x^2+x-6-x^2-x=-6\)
nên biểu thức không phụ thuộc vào biến
\(x=bn\) cx đc