\(=\left(x^2-2.x.2-4\right)-4\)
=\(^{\left(x-2\right)^2-4}\)
vậy GTNN =-4 tại x=2
\(=\left(x^2-2.x.2-4\right)-4\)
=\(^{\left(x-2\right)^2-4}\)
vậy GTNN =-4 tại x=2
a,A=x2+x-2 b,B=4x-x2+5 c,C=9x2-6x+3 d,D=3x+x2-7 e,E=x2+y2-3x+2y+3 f,F=x2+y2-x+4y+5
bài 1:
a)7x(x2-7x+3) b)(x+6)(x-7)
c)(x-8)2 d) (3x+2)2
e)(x-4)(x+4)-(5-x)2
Bài 2:
a)2(x-7)-9=10 b)(2x-5)2-x(4x-3)=2x+50
Chứng minh biểu thức luôn dương với mọi x:
a) A=x^2+4x+7
b) B=x^2-10x+29
c) C=4x^2+4x+5
d) D=x^2-x+5
e) E=2x^2-3x+13
Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) 1/4 x -x² +2 b) 3x + 2x² +1 c) 9x² -12x + 5 d) ( x+2)² +(x-2)²
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào x :
a) A=(x+6)2+2(x-5)2-(x+2)2-2(x-3)2
b) B=(x-2)(x2+2x+4)-(x+2)(x2-2x+4)
c) C=x4+2x2-(x2-2x+3)(x2+2x+3)
Chứng minh rằng
a) – x2 + 4x – 5 < 0 với mọi x
b) x4 + 3x2 + 3 > 0 với mọi x
c) (x2 + 2x + 3)(x2 + 2x + 4) + 3 > 0 với mọi x
chứng minh rằng
a)A=x2+4xy+5y2+2x-10y+14>0
b)B=5x2+10y2-(xy-4x-2y+3)>0
c)C=(x2+2x+3)(x2+2x+4)+3>0
Bài 3: Rút gọn các biểu thức sau:
1) ( x+ 3)(x2 -3x + 9) - (x3 + 54)
2) (2x + y)(4x2 + 2xy + y2 ) - (2x – y)(4x2 + 2xy + y2 )
3) (x – 1)3 – (x + 2)(x2 -2x +4) +3(x +4)(x – 4)
4) x(x + 1)(x - 1) – (x + 1)(x2 – x +1)
5) 8x3 - 5 (2x + 1)(4x2 – 4x + 1)
6) 27 + (x – 3)(x2 +3x + 9)
7) (x – 1)3 – (x +2)(x2 -2x + 4) +3(x +4)(x -4)
8) (x – 2)3 +6( x – 1)2 –(x +1)(x2 -x +1) +3x
Rút gọn :
a. ( x + 2 ) ( x2 - 2x + 4 ) - ( 1 - 3x ) ( 1 + 3x + 9x2)
b . ( x + y ) ( y2 - 2y + 4 ) + ( 5 - y ) ( 25 + 5y + y2)