Theo tôi nghĩ đề là như thế này :
Chứng minh :
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\ge\dfrac{9}{4a+4b+4c}\)
Làm :
Áp dụng BĐT Cachy dạng phân thức, ta có :
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\ge\dfrac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\dfrac{9}{4a+4b+4c}\)
Dấu "=" xảy ra khi a = b = c .
=> ĐPCM