\(=\dfrac{3.4.5...101}{2.3.4...100}=\dfrac{101}{2}\)
\(\left(1+\dfrac{1}{2}\right)\times\left(1+\dfrac{1}{3}\right)\times...\times\left(1+\dfrac{1}{100}\right)\\ =\dfrac{3}{2}\times\dfrac{4}{3}\times...\times\dfrac{101}{100}\)
\(=\dfrac{101}{2}\)
\(=\dfrac{3.4.5...101}{2.3.4...100}=\dfrac{101}{2}\)
\(\left(1+\dfrac{1}{2}\right)\times\left(1+\dfrac{1}{3}\right)\times...\times\left(1+\dfrac{1}{100}\right)\\ =\dfrac{3}{2}\times\dfrac{4}{3}\times...\times\dfrac{101}{100}\)
\(=\dfrac{101}{2}\)
Chứng tỏ
\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
Tính một cách hợp lý:
a\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)...\left(\dfrac{1}{100}-1\right)\)) \(x:\dfrac{99}{100}:\dfrac{98}{99}:...:\dfrac{2}{3}:\dfrac{1}{2}\)
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}:\dfrac{15-\dfrac{15}{11}+\dfrac{15}{121}}{16-\dfrac{16}{11}+\dfrac{16}{121}}\)
c) \(\dfrac{\dfrac{1}{9}-\dfrac{5}{6}-4}{\dfrac{7}{12}-\dfrac{1}{36}-10}\)
d) \(\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)...\left(\dfrac{1}{99}+1\right)\)
e)
C=\(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{399}\)
E=\(\dfrac{6}{1.3.7}+\dfrac{6}{6.7.9}+...+\dfrac{6}{13.15.19}\)
F=\(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{92}{100}}{\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}}\)
G=\(10-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-...-\dfrac{1}{6}-\dfrac{1}{2}\)
Bài 1: \(\frac{1}{6}\)+\(\frac{-5}{7}\): x = \(\frac{-7}{18}\)
Bài 2: Tìm tích
a)\(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{999}+1\right)\)
b)\(\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{1000}-1\right)\)
c)\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{99}{10^2}\)
Nhanh giùm mình nha, mai thi rồi.
1/1×2+1/2×3+1/3×4+1/4×5+.....1/19×20
1/1*2+1/3*4+1/5*6+.....+1/1317*1318
Tính \(\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{6^2-1}...\frac{2011^2}{2012^2-1}\)
1/2+1/3+1/4+......+1/15=a/b, chứng minh a không chia hết cho 17
Tính nhanh:
\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right).....\left(\dfrac{1}{99}-1\right)\)