1+1=1
VÌ TA CHUYỂN THÀNH CHỮ MỘT CỘNG MỘT BẰNG NĂM
MÀ NĂM NGÓN TAY LÀ 1 BÀN TAY NÊN 1+1=1
1+1=1
VÌ TA CHUYỂN THÀNH CHỮ MỘT CỘNG MỘT BẰNG NĂM
MÀ NĂM NGÓN TAY LÀ 1 BÀN TAY NÊN 1+1=1
1+1= Mấy? Khó quá mọi người giải thích giúp ạ!!!
Tìm TXĐ:
a) y=\(\left(1-x\right)^{\dfrac{-1}{3}}\)
b) \(y=\sqrt{\log_{0,5}\dfrac{2x+1}{x+5}-2}\)
c) \(y=\log_{10}\sqrt{x^2-x-12}\)
d) \(y=\sqrt{\log_{10}x-1+\log_{10}x+1}\)
Tính đạo hàm của hàm số sau:
a) \(y=ln\left(1+\sqrt{3x-1}\right)\)
b) \(y=log\left(2sin^2x-1\right)\)
c) \(y=3^{x^3+3x+1}e^x\)
Chứng minh rằng :
a) \(\log_{a_1}a_2.\log_{a_2}a_3.\log_{a_3}a_4.....\log_{a_{n-1}}a_n=\log_{a_1}a_n\)
b) \(\dfrac{1}{\log_ab}+\dfrac{1}{\log_{a^2}b}+\dfrac{1}{\log_{a^3}b}+.....+\dfrac{1}{\log_{a^nb}}=\dfrac{n\left(n+1\right)}{2\log_ab}\)
Cho \(a>0\) , \(b>0\) thỏa mãn: \(\log_{3a+2b+1}\left(9a^2+b^2+1\right)+\log_{6ab+1}\left(3a+2b+1\right)=2\) .
Tính giá trị của biểu thức: \(P=a+2b\)
Tìm tập nghiệm S của pt Log\(\sqrt{2}\) (x–1) + log\(\dfrac{1}{2}\) (x+1)=1
chứng minh các biểu thức sau (với giả thuyết là các biểu thức đã cho có nghĩa)
1. \(\dfrac{log_ac}{log_{ab}c}\) =1+logab
2. logax (bx)=\(\dfrac{log_ab=log_ax}{1=log_ax}\)
3. \(\dfrac{1}{log_ax}\) + \(\dfrac{1}{log_{a^2}x}\) +...+\(\dfrac{1}{log_{a^n}x}\) =\(\dfrac{n\left(n+1\right)}{2.log_ax}\)
Tìm x, biết :
a) \(\log_5x=2\log_5a-3\log_5b\)
b) \(\log_{\dfrac{1}{2}}x=\dfrac{2}{3}\log_{\dfrac{1}{2}}a-\dfrac{1}{5}\log_{\dfrac{1}{2}}b\)
y=(4x3−2x2+1)2014. Đạo hàm y′ là: