Giải:
Gọi số gạo mỗi loại A, B, C lần lượt là a, b, c.
Đổi: \(3,6 tấn = 3600kg\)
Theo đề ra, ta có:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) và \(a+b+c=3600\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{3600}{6}=600\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{1}=600\\\dfrac{b}{2}=600\\\dfrac{c}{3}=600\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=600\\b=1200\\c=1800\end{matrix}\right.\)
Vậy số gạo mỗi loại A, B, C lần lượt là 600kg, 1200kg và 1800kg.
Chúc bạn học tốt!
Gọi số gạo mỗi loại lần lượt là a,b,c (a,b,c > 0 )
Đổi 3,6 tấn = 3600 kg
Theo bài ra ta có:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) và \(a+b+c=3600\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{3600}{6}=600\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{1}=600\Rightarrow a=600\\\dfrac{b}{2}=600\Rightarrow b=1200\\\dfrac{c}{3}=600\Rightarrow c=1800\end{matrix}\right.\)
Vậy ..............