- Thay từng giá trị vào, ta thấy A. \(\dfrac{15}{4}\) thỏa mãn.
- Thay từng giá trị vào, ta thấy A. \(\dfrac{15}{4}\) thỏa mãn.
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
giải hệ phương trình
a,\(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=5\\\dfrac{1}{x}-\dfrac{4}{y}=-3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\dfrac{4}{x+2}-\dfrac{1}{x-2y}=1\\\dfrac{20}{x+2y}+\dfrac{3}{x-2y}=1\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}\left|x-1\right|+\left|y-2\right|=2\\\left|x-1\right|+y=3\end{matrix}\right.\)
Giải bất phương trình :
a, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}\dfrac{< }{ }5\sqrt{x+1}\)
b, \(2x\sqrt{x}+\dfrac{5-4x}{\sqrt{x}}\dfrac{>}{ }\sqrt{x+\dfrac{10}{x}-2}\)
c, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8< 0\)
a)Có bao nhiêu giá trị nguyên dương x thỏa mãn \(\dfrac{x+3}{x^2-4}-\dfrac{1}{x+2}< \dfrac{2x}{2x-x^2}\)
b) Tập nghiệm S của bất pt \(\dfrac{-2x^2+7x+7}{x^2-3x-10}\le-1\)
a) \(\dfrac{5x-2}{2-2x}\)+\(\dfrac{2x-1}{2}\)=1-\(\dfrac{x^2+x-3}{1-x}\)
b)\(\dfrac{1-6x}{x-2}+\dfrac{9x+4}{x+2}\)=\(\dfrac{x\left(3x-1\right)+1}{\left(x-2\right).\left(x-2\right)}\)
c)1+\(\dfrac{x}{3-x}\)=\(\dfrac{3x}{\left(x+2\right).\left(x-3\right)}+\dfrac{2}{x+2}\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
\(\dfrac{x-1}{x+2}-\dfrac{x-2}{x+3}=\dfrac{x-4}{x+5}-\dfrac{x-5}{x+6}\)
giải phương trình \(\left|\dfrac{x^2}{2}-2x+\dfrac{3}{2}\right|+\left|\dfrac{x^2}{2}+3x+4\right|=\dfrac{3}{4}\)
giải giúp mik bt này vs mn!
1)\(\left\{{}\begin{matrix}2x^2+y^2+x=3\left(xy+1\right)+2y\\\dfrac{2}{3+\sqrt{2x-y}}+\dfrac{2}{3+\sqrt{4-5x}}=\dfrac{9}{2x-y+9}\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}\left(x+3y+1\right)\sqrt{2xy+2y}=y\left(3x+4y+3\right)\\\left(\sqrt{x+3}-\sqrt{2y-2}\right)\left(x-3+\sqrt{x^2+x+2y-4}\right)=4\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}\sqrt{2x-3}=\left(y^2+2011\right)\left(5-y\right)+\sqrt{y}\\y\left(y-x+2\right)=3x+3\end{matrix}\right.\)
5)\(\left\{{}\begin{matrix}x^3+2x^2=x^2y+2xy\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14=x-2}\end{matrix}\right.\)