a)\(\left(x^2-x+1\right).\left(x+1\right)-x^3+3x=15\)
\(x^3+x^2-x^2-x+x+1-x^3+3x=15\)
\(1+3x=15\)
\(3x=15-1\)
\(3x=14\)
\(x=\frac{14}{3}\)
b) \(\left(x+3\right).\left(x-2\right)+3x=4\left(x+\frac{3}{4}\right)\)
\(x^2-2x+3x-6+3x=4x+3\)
\(x^2-2x+3x+3x-4x=6+3\)
\(x^2=9\)
\(x^2=3^2\) hoặc \(x^2=\left(-3\right)^2\)
vậy x=3 hoặc x=-3
a) \(\left(x^2-x+1\right)\cdot\left(x+1\right)-x^3+3x=15\)
\(x^3-x^2+x+x^2-x+1-x^3+3x=15\)
\(3x+1=15\)
\(x=\frac{14}{3}\)
b) \(\left(x+3\right)\left(x-2\right)+3x=4\left(x+\frac{3}{4}\right)\)
\(x^2+3x-2x-6+3x=4x+3\)
\(x^2=9\)
\(x=+-3\)
c) \(\left(x^2-5\right)\left(x+2\right)+5x=2x^2+17\)
\(x^3-5x+2x^2-10+5x=2x^2+17\)
\(x^3=27\)
\(x=3\)
c)\(\left(x^2-5\right).\left(x+2\right)+5x=2x^2+17\)
\(x^3+2x^2-5x-10+5x=2x^2+17\)
\(x^3+2x^2-5x+5x-2x^2=10+17\)
\(x^3=27\)
\(x^3=3^3\)
vậy x=3