Bài 1:
a) \(\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+2-x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow x+2=0\) hoặc \(x+4=0\)
\(\Leftrightarrow x=-2\) hoặc \(x=-4\)
b) \(2x^3+\dfrac{3}{2}x^2=0\)
\(\Leftrightarrow x^2\left(2x+\dfrac{3}{2}\right)=0\)
\(\Leftrightarrow x^2=0\) hoặc \(2x+\dfrac{3}{2}=0\)
\(\Leftrightarrow x=0\) hoặc \(x=-\dfrac{3}{4}\)
bài 1
a) (x+2)2-x2+4=0
\(\Leftrightarrow\)x2+4x+4-x2+4=0
\(\Leftrightarrow\)4x+8=0
\(\Leftrightarrow\) 4(x+2)=0
=>x+2=0
\(\Leftrightarrow\)x=-2
vậy x=-2
b) \(2x^3+\dfrac{3}{2}x^2=0\)
\(\Leftrightarrow x^2\left(2x+\dfrac{3}{2}\right)=0\)
=>\(\left[{}\begin{matrix}x^2=0\\2x+\dfrac{3}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\-\dfrac{3}{4}\end{matrix}\right.\)
vậy x=0 hoặc x=-\(\dfrac{3}{4}\)
Bài 2:
a) Tìm điều kiện xác định
Phân thức được xác định \(\Leftrightarrow x^3-9x\ne0\) ; \(x+3\ne0\) ; \(x^2+3x\ne0\) và \(3x+9\ne0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)\ne0\) ; \(x+3\ne0\) ; \(x\left(x+3\right)\ne0\) và \(3\left(x+3\right)\ne0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\\x\ne-3\end{matrix}\right.\)
Vậy \(x\ne0;x\ne3\) và \(x\ne-3\) thì phân thức được xác định.
b) \(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}:\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\)
\(=\dfrac{9}{x\left(x^2-9\right)}+\dfrac{1}{x+3}:\left[\dfrac{x-3}{x\left(x+3\right)}-\dfrac{x}{3\left(x+3\right)}\right]\)
\(=\left[\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\right]:\dfrac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=-\dfrac{3x\left(x+3\right)\left(9+x^2-3x\right)}{x\left(x-3\right)\left(x+3\right)\left(x^2-3x+9\right)}\)
\(=-\dfrac{3x}{x\left(x-3\right)}\)
c) Tại x = 2 thì phân thức được xác định nên ta có:
\(-\dfrac{3x}{x\left(x-3\right)}=-\dfrac{3.2}{2\left(2-3\right)}=\dfrac{6}{2}=3.\)