\(1.\)
\(a.\)
\(\dfrac{x}{-150}=-\dfrac{6}{x}\)
\(\Rightarrow x^2=\left(-6\right)\left(-150\right)\)
\(\Rightarrow x^2=900\)
\(\Rightarrow x=\pm30\)
\(2.\)
\(a.\) \(2x=3y;5y=7z\) và \(3x-7y+5z=30\)
Ta có : \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) \(\left(1\right)\)
\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
\(\Rightarrow\dfrac{x}{21}=2\Rightarrow x=42\)
\(\dfrac{y}{14}=2\Rightarrow y=28\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
Vậy : ..................