Lời giải:
a. Ta thấy:
$18x-30y=3(6x-10y)$ chia hết cho $3$ với mọi $x,y$ nguyên, mà $59$ không chia hết cho $3$
Do đó pt $18x-30y=59$ vô nghiệm.
b. $22x-5y=77$
$5y=22x-77=11(2x-7)\vdots 11$
$\Rightarrow y\vdots 11$. Đặt $y=11k$ với $k$ nguyên
$22x-55k=77$
$2x-5k=7$
$2x=5k+7\vdots 2$
$\Rightarrow k$ lẻ. Đặt $k=2t+1$ với $t$ nguyên
$2x=5(2t+1)+7=10t+12$
$x=5t+6$
Vậy $(x,y)=(5t+6, 22t+11)$ với $t$ nguyên
c.
$12x+19y=94$
$19y=94-12x\vdots 2\Rightarrow y\vdots 2$
Đặt $y=2k$ với $k$ nguyên. Khi đó:
$12x+38k=94$
$6x+19k=47$
$6k=47-19k=19(2-k)+9$
$\Rightarrow 6k-9\vdots 19$
$\Leftrightarrow 2k-3\vdots 19$
$\Leftrightarrow 2k-22\vdots 19$
$\Leftrightarrow k-11\vdots 19$
$\Rightarrow k=19t+11$ với $t$ nguyên
\(x=\frac{47-19k}{6}=\frac{47-19(19t+11)}{6}=\frac{-162-361t}{6}=-27-\frac{361t}{6}\)
Để $x$ nguyên thì $t\vdots 6$. Khi đó đặt $t=6m$ với $m$ nguyên
Khi đó:
$y=2k=2(19t+11)=2(114m+11)=228m+22$
$x=-27-361m$ với $m$ nguyên bất kỳ.