1. \(x^3+3x=x^2y+2y+5\)
\(\Leftrightarrow x^3+3x-x^2y-2y-5=0\)
\(\Leftrightarrow(x^3+2x)-(x^2y+2y)+x-5=0\)
\(\Leftrightarrow x(x^2+2)-y(x^2+2)=5-x\)
\(\Leftrightarrow(x^2+2)\left(x-y\right)=5-x\)
\(\Leftrightarrow\left(x-y\right)=\dfrac{5-x}{2^2+2}\)
Vì x,y nguyên nên x-y nguyên
\(\Rightarrow5-x⋮x^2+2\)
\(\Rightarrow x-5⋮x^2+2\)
\(\Rightarrow(x-5)\left(x+5\right)⋮x^2+2\)
\(\Rightarrow x^2-25⋮x^2+2\)
\(\Rightarrow x^2+2-27⋮x^2+2\)
\(\Rightarrow27⋮x^2+2\)
=> \(x^2+2\) thuộc tập hợp ước dương của 27 ( vì \(x^2+2>0\))
\(\Rightarrow x^2+2\in\left\{1;3;9;27\right\}\)
\(\Rightarrow x^2\in\left\{-1;1;7;25\right\}\)
Mà \(x^{ }\) là số nguyên
=> \(x^2\in\left\{1;25\right\}\)
=> \(x\in\left\{-5;-1;1;5\right\}\)
Ta có bảng:
x | -5 | -1 | 1 | 5 |
y | \(\dfrac{145}{27}\) | -3 | \(\dfrac{-1}{3}\) | 5 |
Nhận xét | Loại | Chọn | Loại | Chọn |
Vậy ...
Còn phần 2 bạn xem câu hỏi Le chi , mình đã trả lời giúp bạn ấy rồi