a: \(=\dfrac{3}{2}\left(-21-\dfrac{1}{3}+1+\dfrac{1}{3}\right)=\dfrac{3}{2}\cdot\left(-20\right)=-30\)
b: \(=-9-4:4+1:\dfrac{4}{3}\)
\(=-10+1\cdot\dfrac{3}{4}=-10+\dfrac{3}{4}=-\dfrac{37}{4}\)
c: \(=2\sqrt{3}+3\sqrt{3}-\sqrt{3}=4\sqrt{3}\)
a: \(=\dfrac{3}{2}\left(-21-\dfrac{1}{3}+1+\dfrac{1}{3}\right)=\dfrac{3}{2}\cdot\left(-20\right)=-30\)
b: \(=-9-4:4+1:\dfrac{4}{3}\)
\(=-10+1\cdot\dfrac{3}{4}=-10+\dfrac{3}{4}=-\dfrac{37}{4}\)
c: \(=2\sqrt{3}+3\sqrt{3}-\sqrt{3}=4\sqrt{3}\)
Thực hiện phép tính:
\(A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(B=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\dfrac{2^2}{7^2}-\dfrac{4}{343}}\)
1)Thực hiện phép tính
a) \(\dfrac{9^8\cdot5^6}{3^7\cdot27^3\cdot25^4}\) b) \(\dfrac{5^{20}\cdot6^{18}}{15^{20}\cdot4^{10}}\) c) \(\left(\dfrac{1}{3}\right)^{50}\cdot9^{25}-\left(\dfrac{2}{3}\right)^{100}:\left(\dfrac{8}{27}\right)^{33}\) d) \(\left(\dfrac{3}{8}\right)^{60}\cdot\left(\dfrac{2}{3}\right)^{60}:\left(\dfrac{1}{2}\right)^{119}\cdot\left(\dfrac{1}{2}\right)\)
2) Tìm x, biết:
a) \(\dfrac{x}{12}=\dfrac{5}{x}\) b)\(8^x=2^{2x+3}\) c)\(\dfrac{1}{2}\sqrt{\dfrac{1}{2}x-2}-\dfrac{2}{3}=\dfrac{1}{3}\)
\(\dfrac{\sqrt{\dfrac{9}{4}-3^{-1}+2018^0}}{25\%+1\dfrac{1}{4}-1,3}-\dfrac{\left(\dfrac{-1}{2}\right)^2-\sqrt{\dfrac{4}{9}}+0,4}{0,6-\dfrac{2}{3}.\left(\dfrac{-1}{4}-\dfrac{1}{2}\right)}\)
Tính
a) \(2\sqrt{\dfrac{25}{16}}-3\sqrt{\dfrac{49}{36}}+4\sqrt{\dfrac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\dfrac{1}{2}}\right)^2+\dfrac{1}{16}.\left(\sqrt{\dfrac{3}{4}}\right)^2\)
c) \(\dfrac{2}{3}\sqrt{\dfrac{81}{16}}-\dfrac{3}{4}\sqrt{\dfrac{64}{9}}+\dfrac{7}{5}.\sqrt{\dfrac{25}{196}}\)
1. Giải \(a,\sqrt{4}-\sqrt{9x}+\sqrt{25x}=8\) \(b,\sqrt{\dfrac{1}{4x}}+\sqrt{\dfrac{1}{9x}}-\sqrt{\dfrac{1}{36x}}=\dfrac{2}{3}\)
2. \(A=\dfrac{1}{\sqrt{1\cdot2018}}+\dfrac{1}{\sqrt{2\cdot2017}}+...+\dfrac{1}{\sqrt{k\left(2018-k+1\right)}}+...+\dfrac{1}{\sqrt{2018\cdot1}}\)
So sánh A với \(2\cdot\dfrac{2018}{2019}\)
3.Cho abc=201. Tính\(\dfrac{201a}{ab+201+a+201}+\dfrac{b}{cb+b+201}+\dfrac{c}{ac+c+1}\)
4.\(B=\left(\dfrac{1-x^3}{1-x}+x\right)\cdot\left(\dfrac{1+x^3}{1+x}-x\right)\) a, Rút gọn B b, tìm x để B=64
5. Tìm x: \(\left|x-2\right|-2\left|x+1\right|=3-2\left(1-2x\right)\)
Thực hiện các phép tính sau :
A=\(1+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+\dfrac{1}{4}.\left(1+2+3+4\right)+...+\dfrac{1}{12}.\left(1+2+...+12\right)\)
Bài 1: Thực hiện phép tính:
\(\sqrt{25}\)x\(\left(0,4-1\dfrac{1}{12}\right)\):\(\left[\left(-2\right)^3x\dfrac{11}{8}\right]\)
Tính hợp lí nếu có thể
a) \(\left(\dfrac{5}{7}-\dfrac{7}{5}\right)-\left[\dfrac{1}{2}-\left(-\dfrac{2}{7}-\dfrac{1}{10}\right)\right]\)
b) \(\dfrac{2}{15}:\left(-5\dfrac{4}{5}\right).2\dfrac{5}{12}+\sqrt{1\dfrac{9}{16}}:\left(-\dfrac{3}{4}\right)\)
Bài 1 :
a) Tính B = \(\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.35}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.\left(\sqrt{196}\right)^3}\)
b)Tìm x biết : \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|-3,2+\sqrt{\dfrac{4}{25}}\right|\)
c)Tính \(\left|3x+1\right|>4\)