Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nigou Nguyễn

1, Rút gọn các biểu thức sau :

a) ( \(\sqrt{28}\) - \(\)2\(\sqrt{3}\) + \(\sqrt{7}\) ) \(\sqrt{7}\) + \(\sqrt{84}\)

b, ( \(\sqrt{6}\) + \(\sqrt{5}\) )2 - \(\sqrt{120}\)

2,Rút gọn các biểu thức sau :

a) \(\sqrt{\dfrac{a}{b}}\) + \(\sqrt{ab}\) + \(\dfrac{a}{b}\) \(\sqrt{\dfrac{b}{a}}\) với a>0 , b>0

b) \(\sqrt{\dfrac{m}{1-2x+x^2}}\) . \(\sqrt{\dfrac{4m-8mx+4mx^2}{81}}\) với m>0 và x # 1

3, Chứng minh các đẳng thức sau :

a) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\) \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) = 1 với a>= 0 và a #1

b) \(\dfrac{a+b}{b^2}\) \(\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}\) =\(\left|a\right|\) với a+b > 0 và b#0

MẤY BẠN GIỎI TOÁN GIÚP MK VỚI , THỨ 5 MK PHẢI NỘP BÀI RỒI

Phùng Khánh Linh
9 tháng 7 2018 lúc 17:13

\(1a.\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}=\left(2\sqrt{7}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}=21-2\sqrt{21}+2\sqrt{21}=21\) \(b.\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}=11+2\sqrt{30}-2\sqrt{30}=11\)

\(2a.\sqrt{\dfrac{a}{b}}+\sqrt{ab}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{a}{b}.b^2}+\sqrt{\dfrac{a^2}{b^2}.\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}+b\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{a}{b}}=\left(2+b\right)\sqrt{\dfrac{a}{b}}\) \(b.\sqrt{\dfrac{m}{1-2x+x^2}}.\sqrt{\dfrac{4m-8mx+4mx^2}{81}}=\sqrt{\dfrac{m}{\left(x-1\right)^2}}.\sqrt{\dfrac{\left(2\sqrt{m}x-2\sqrt{m}\right)^2}{81}}=\dfrac{\sqrt{m}}{\text{|}x-1\text{|}}.\dfrac{\text{|}2\sqrt{m}x-2\sqrt{m}\text{|}}{9}=\dfrac{\sqrt{m}}{\text{|}x-1\text{|}}.\dfrac{2\sqrt{m}\text{|}x-1\text{|}}{9}=\dfrac{2m}{9}\) \(3a.VP=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=\left(a+\sqrt{a}+1+\sqrt{a}\right)\left(\dfrac{1}{\sqrt{a}+1}\right)^2=\left(\sqrt{a}+1\right)^2.\dfrac{1}{\left(\sqrt{a}+1\right)^2}=1=VT\)

KL : Vậy đẳng thức được chứng minh.

\(b.VP=\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{b^2\text{|}a\text{|}}{\text{|}a+b\text{|}}=\dfrac{a+b}{b^2}.\dfrac{b^2\text{|}a\text{|}}{a+b}=\text{|}a\text{|}=VT\)

KL : Vậy đẳng thức được chứng minh .

P/s : Dài v ~


Các câu hỏi tương tự
vi thanh tùng
Xem chi tiết
Trần Diệp Nhi
Xem chi tiết
Trần Thị Ngọc Diệp
Xem chi tiết
Hồ Quang Phước
Xem chi tiết
Bảo
Xem chi tiết
Liên Phạm Thị
Xem chi tiết
Nguyễn Ngọc Quỳnh Như
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
nguyễn thái hồng duyên
Xem chi tiết