1. Rút gọn các biểu thức sau:
a, \(\dfrac{1}{4}\sqrt{180}+\sqrt{20}-\sqrt{45}+5\) ; b,\(3\sqrt{\dfrac{1}{3}}+\dfrac{1}{4}\sqrt{48}-2\sqrt{3}\)
c,\(\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}\) ; d,\(\sqrt{\dfrac{a}{1+2b+b^2}}.\sqrt{\dfrac{4a+8ab+4ab^2}{225}}\)
2. Chứng minh các hằng đẳng thức sau:
a, \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}=4\)
b,\(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\dfrac{2b}{a-b}=1\) với a≥0, b≤0, a≠ b
c, \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) với a>0, a≠1
3. Chứng minh rằng giá trị của biểu thức M không phụ thuộc vào a:
M= \(\left(\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\right)\left(1+\dfrac{1}{a}\right)\) với a >0; a≠ 1
Giúp em với e cần gấp lắm ạ
RÚT GỌN CÁC BIỂU THỨC SAU :
a ] \(\dfrac{1}{4}\)\(\sqrt{180}\) + \(\sqrt{20}\)- \(\sqrt{45}\) + 5
b] \(\sqrt[3]{\dfrac{1}{3}}\) +\(\dfrac{1}{4}\)\(\sqrt{48}\) - \(2\sqrt{3}\)
c] \(\sqrt{2a}\) - \(\sqrt{18}a^3\) +\(\sqrt[4]{\dfrac{a}{2}}\)
d]\(\sqrt{\dfrac{a}{1+2b+b^2}}\) . \(\sqrt{\dfrac{4a+8ab+4ab^2}{225}}\)
chứng minh các đẳng thức sau
a)\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}=\)/a/ với a+b>0 và b≠0
b)\(\frac{\sqrt{a}++\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)với a≥0,b≥0 và a≠b
Chứng minh các đẳng thức sau :
a) \(\left(\dfrac{1-a\sqrt{a}}{a-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2=1\) với \(a\ge0;a\ne1\)
b) \(\dfrac{a+b}{b^2}\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}=\left|a\right|\) với \(a+b>0;b\ne0\)
chứng minh các đẳng thức sau:
a) \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\) + \(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\) = 4
b) \(\dfrac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}\) - \(\dfrac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) - \(\dfrac{2b}{a-b}\) = 1 với ≥ 0, b ≥ 0, a ≠ b;
c) \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\)\(\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\) = 1 - a với a > 0, a ≠ 1
\(\sqrt{2a}-\sqrt{18^3}+4\sqrt{\dfrac{a}{2}}\)
\(\sqrt{\dfrac{a}{1+2b+b^2}}\cdot\sqrt{\dfrac{4a+8ab+4ab^2}{225}}\)
Chứng minh các biểu thức sau không phụ thuộc vào biến:
a) A = \(\frac{1}{x}.\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x+1}-\sqrt{x-1}}+\frac{\sqrt{x+1}-\sqrt{x-1}}{\sqrt{x+1}+\sqrt{x-1}}\right)\) với x>1
b) B = \(\frac{2x}{x+3\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+4\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+5\sqrt{x}+6}\) với x>= 0
c) C = \(\frac{\sqrt{a^3}+a}{a^2+\sqrt{a^5}}.\left(\frac{b^2}{a-\sqrt{a^2-b^2}}+\frac{b^2}{a+\sqrt{a^2-b^2}}\right)\) với a>0 và |a| > |b|
d) D = \(\frac{a+b\sqrt{a}}{b-a}.\sqrt{\frac{ab+a^2-2\sqrt{a^3b}}{b^2+2b\sqrt{a}+a}}:\frac{a}{\sqrt{a}+\sqrt{b}}\) với b>a>0
1, Rút gọn các biểu thức sau :
a) ( \(\sqrt{28}\) - \(\)2\(\sqrt{3}\) + \(\sqrt{7}\) ) \(\sqrt{7}\) + \(\sqrt{84}\)
b, ( \(\sqrt{6}\) + \(\sqrt{5}\) )2 - \(\sqrt{120}\)
2,Rút gọn các biểu thức sau :
a) \(\sqrt{\dfrac{a}{b}}\) + \(\sqrt{ab}\) + \(\dfrac{a}{b}\) \(\sqrt{\dfrac{b}{a}}\) với a>0 , b>0
b) \(\sqrt{\dfrac{m}{1-2x+x^2}}\) . \(\sqrt{\dfrac{4m-8mx+4mx^2}{81}}\) với m>0 và x # 1
3, Chứng minh các đẳng thức sau :
a) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\) \(\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\) = 1 với a>= 0 và a #1
b) \(\dfrac{a+b}{b^2}\) \(\sqrt{\dfrac{a^2b^4}{a^2+2ab+b^2}}\) =\(\left|a\right|\) với a+b > 0 và b#0
MẤY BẠN GIỎI TOÁN GIÚP MK VỚI , THỨ 5 MK PHẢI NỘP BÀI RỒI
Bài 1
A=\(\dfrac{1}{2\sqrt{3}-2}\)-\(\dfrac{1}{2\sqrt{3}+2}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{x-\sqrt{x}}\) với x>;x≠1
a)Rút gọn biểu thức A và B
b)Hãy tìm các giá trị của x để giá trị biểu thức B bằng \(\dfrac{2}{5}\) giá trị biểu thức A