\(B=\dfrac{35^3+5\cdot35^2-5^3\cdot7}{10\cdot70^2+10^2\cdot70-10^3}=\dfrac{\left(5\cdot7\right)^3+5\cdot\left(5\cdot7\right)^2-5^3\cdot7}{2\cdot5\cdot\left(2\cdot5\cdot7\right)^2+\left(2\cdot5\right)^2\cdot2\cdot5\cdot7-\left(2\cdot5\right)^3}=\dfrac{5^3\cdot7^3+5\cdot5^2\cdot7^2-5^3\cdot7}{2\cdot5\cdot2^2\cdot5^2\cdot7^2+2^2\cdot5^2\cdot2\cdot5\cdot7-2^3\cdot5^3}=\dfrac{5^3\cdot7^3+5^3\cdot7^2-5^3\cdot7}{2^3\cdot5^3\cdot7^2+2^3\cdot5^3\cdot7-2^3\cdot5^3}=\dfrac{5^3\left(7^3+7^2-7\right)}{2^3\cdot5^3\left(7^2+7-1\right)}=\dfrac{343+49-7}{8\cdot\left(49+7-1\right)}=\dfrac{385}{8\cdot55}=\dfrac{385}{440}=\dfrac{7}{8}\)
Vậy \(B=\dfrac{7}{8}\)