a) \(\dfrac{x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^3-1}\)
\(=\dfrac{\left(x^8+x^7+x^6\right)+\left(x^5+x^4+x^3\right)+\left(x^2+x+1\right)}{x^3-1}\)
\(=\dfrac{x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^3-1}\)
\(=\dfrac{\left(x^2+x+1\right)\left(x^6+x^3+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^6+x^3+1}{x-1}\)
b) \(\dfrac{x^5+x+1}{x^3+x^2+x}\)
\(=\dfrac{x^5+x^4+x^3+x^2-x^4-x^3-x^2+x+1}{x^3+x^2+x}\)
\(=\dfrac{\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)}{x^3+x^2+x}\)
\(=\dfrac{x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}{x^3+x^2+x}\)
\(=\dfrac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}\)
\(=\dfrac{x^3-x^2+1}{x}\)