a)\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}+\sqrt{3}\)
b)\(=\sqrt{\left(4-\sqrt{6}\right)^2}=4-\sqrt{6}\)
c)\(=\sqrt{\left(3-\sqrt{7}\right)^2}\)
\(=3-\sqrt{7}\)
a)\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(=\sqrt{5}+\sqrt{3}\)
b)\(=\sqrt{\left(4-\sqrt{6}\right)^2}=4-\sqrt{6}\)
c)\(=\sqrt{\left(3-\sqrt{7}\right)^2}\)
\(=3-\sqrt{7}\)
rút gọn các biểu thức:
a) \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
b) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}\)
c) \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
d) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
e) \(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
f) \(\dfrac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\)
giải giúp mjk vs m.n :]] arigatou <3
Bài 1: So sánh
a)\(\sqrt{2}+\sqrt{3} \) và \(\sqrt{10}\) b) \(\sqrt{3}+2\) và \(\sqrt{2}+\sqrt{6}\)
c)16 và \(\sqrt{15}.\sqrt{17}\) d)8 và \(\sqrt{15} +\sqrt{17}\)
Bài 2:Rút gọn các biểu thức sau:
a)\(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) b)\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\left(\sqrt{6}-\sqrt{5}\right)^2-\sqrt{11+2\sqrt{30}}\)
\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
\(\sqrt{11+4\sqrt{7}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{22-12\sqrt{2}}-\sqrt{19+6\sqrt{2}}\)
\(\sqrt{-6\sqrt{3}+12}+\sqrt{-12\sqrt{3}+21}\)
Bài 1: Rút gọn
a) \(\sqrt{13-2\sqrt{42}}\)
b) \(\sqrt{46+6\sqrt{5}}\)
c) \(\sqrt{12-3\sqrt{15}}\)
d) \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
e) \(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\)
Rút gọn biểu thức
\(\dfrac{1}{3-\sqrt{8}}-\dfrac{1}{\sqrt{8}-\sqrt{7}}+\dfrac{1}{\sqrt{7}-\sqrt{6}}-\dfrac{1}{\sqrt{6}-\sqrt{5}}+\dfrac{1}{\sqrt{5}-2}\)
Rút gọn căn bậc hai theo hằng đẳng thức:
a)\(\left(4\sqrt{2}+\sqrt{30}\right).\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
b)\(2.\left(\sqrt{10}-\sqrt{2}\right).\left(4+\sqrt{6-2\sqrt{5}}\right)\)
c)\(\left(7+\sqrt{14}\right).\sqrt{9-2\sqrt{14}}\)
d)\(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)
e) \(\left(\sqrt{21}+7\right).\sqrt{10-2\sqrt{21}}\)
f)\(\sqrt{2-\sqrt{3}.\left(\sqrt{6}+\sqrt{2}\right)}\)
g) \(\sqrt{2}\sqrt{8+3\sqrt{7}}\)
h) \(\sqrt{11+6\sqrt{2}}\)
a)\(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\frac{6\sqrt{2}-4}{3-\sqrt{2}}\)
b)\(\sqrt{2-\sqrt{3}}-\sqrt{\frac{3}{2}}\)
c)\(\frac{\sqrt{30}-\sqrt{2}}{\sqrt{8-\sqrt{15}}}-\sqrt{8-\sqrt{49+8\sqrt{3}}}\)
d) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
e)\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
f)\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
g)\(\frac{\frac{\sqrt{2+\sqrt{3}}}{2}}{\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)
Rút gọn
a) \(A=\left(\frac{\sqrt{10}-\sqrt{5}}{\sqrt{8}-2}-\frac{\sqrt{90}}{3}\right).\frac{1}{\sqrt{5}}\)
b) \(B=\left(\frac{\sqrt{26}-\sqrt{13}}{1-\sqrt{2}}+\frac{\sqrt{18}-\sqrt{6}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{13}-\sqrt{6}}\)
c) \(C=\frac{\sqrt{10+2\sqrt{21}}-\sqrt{5-2\sqrt{6}}}{\sqrt{9-2\sqrt{14}}}\)
rÚT GỌN: G=\(\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{6}}-\sqrt{2}\)
chững minh : a) \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt[]{6}=9\)
b)\(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
c)\(\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
giúp mk với tối mai mk nạp rồi