Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Biện Bạch Ngọc

1/ \(Q=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

a) Rút gọn Q

b) tìm giá trị nhỏ nhất của Q

c) Tìm các số nguyên x để \(\dfrac{3Q}{\sqrt{x}}\) nhận gía trị nguyên

giúp mình với, mk cần gấp

Trần Trung Nguyên
27 tháng 11 2018 lúc 18:19

ĐK: x>0,\(x\ne1\)

a) \(Q=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có Q=\(x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow Q\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi \(\sqrt{x}-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{4}\)

Vậy GTNN của Q là \(\dfrac{3}{4}\) và xảy ra khi \(x=\dfrac{1}{4}\)

c)

Ta có \(\dfrac{3Q}{\sqrt{x}}=\dfrac{3\left(x-\sqrt{x}+1\right)}{\sqrt{x}}=\dfrac{3x-3\sqrt{x}+3}{\sqrt{x}}=3\sqrt{x}-3+\dfrac{3}{\sqrt{x}}\)Vậy để \(\dfrac{3Q}{\sqrt{x}}\) nguyên thì \(\left\{{}\begin{matrix}\sqrt{x}\in Z\\\sqrt{x}\inƯ\left(3\right)\in\left(1;3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=9\left(tm\right)\end{matrix}\right.\)

Vậy x=9 thì \(\dfrac{3Q}{\sqrt{x}}\) nhận giá trị nguyên


Các câu hỏi tương tự
nguyenyennhi
Xem chi tiết
hilo
Xem chi tiết
Aocuoi Huongngoc Lan
Xem chi tiết
CandyK
Xem chi tiết
hilo
Xem chi tiết
Hày Cưi
Xem chi tiết
an hạ
Xem chi tiết
Yuu~chan
Xem chi tiết
Lạc Xuân Thịnh
Xem chi tiết