Bài 2: Phép tịnh tiến

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Nguyễn Linh Chi

1. Phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến đường thằng d: x+y=0 thành d':x+y-4=0. Biết \(\overrightarrow{v}\) cùng phương với vecto \(\overrightarrow{u}\) =(1;1). Tính độ dài vecto \(\overrightarrow{v}\)

2. Cho 2 đường thẳng d:x+y-1=0 và d':x+y-5=0. Phép tịnh tiến theo vecto \(\overrightarrow{u}\) biến đường thẳng d thành d'. Khi đó độ dài nhỏ nhất của vecto \(\overrightarrow{u}\)là bao nhiêu?

3. Cho 3 đường thẳng d:2x+y+3=0, d':2x+y-1=0. Có bao nhiêu vecto \(\overrightarrow{v}\)có độ dàu bằng 2 sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\)biến d thành d'

4. Cho 2 đường thẳng d; x+y+3=0, d':x+y+m=0. Biết có duy nhất một vecto \(\overrightarrow{v}\)có độ dài bằng \(\sqrt{2}\) sao cho phép tịnh tiến theo vecto \(\overrightarrow{v}\) biến d thành d'. Tìm m

Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:41

1.

Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0

Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)

Thay vào pt d' ta được:

\(a+a-4=0\Rightarrow a=2\)

\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)

\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:46

2.

Gọi \(\overrightarrow{u}=\left(a;b\right)\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)

Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)

Ta có:

\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:50

3.

Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=4\) (1)

Gọi \(A\left(-1;-1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=-1+a\\x_{B'}=-1+b\end{matrix}\right.\)

Thay vào pt d':

\(2\left(a-1\right)+2\left(b-1\right)-1=0\)

\(\Leftrightarrow2a+2b=5\Rightarrow b=\frac{5-2a}{2}\)

Thế vào (1):

\(a^2+\left(\frac{5-2a}{2}\right)^2=4\)

\(\Leftrightarrow8a^2-20a+9=0\)

Pt trên có 2 nghiệm pb nên có 2 vecto thỏa mãn

Nguyễn Việt Lâm
18 tháng 10 2020 lúc 7:56

4.

Gọi \(\overrightarrow{v}=\left(a;b\right)\Rightarrow a^2+b^2=2\) (1)

Gọi \(A\left(0;-3\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\x_{B'}=-3+b\end{matrix}\right.\)

Thế vào pt d':

\(a+b+m-3=0\Leftrightarrow b=3-m-a\)

Thế vào (1):

\(a^2+\left(3-m-a\right)^2=2\)

\(\Leftrightarrow2a^2+2\left(m-3\right)a+m^2-6m+7=0\) (2)

Tồn tại duy nhất 1 vecto \(\overrightarrow{v}\) khi và chỉ khi (2) có đúng 1 nghiệm a

\(\Leftrightarrow\Delta'=\left(m-3\right)^2-2\left(m^2-6m+7\right)=0\)

\(\Leftrightarrow m^2-6m+5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=5\end{matrix}\right.\)

Khách vãng lai đã xóa