Chương 4: GIỚI HẠN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Thị Ngọc Nhi

1) lim(2x-1-\(\sqrt{4x^2-4x-3}\))

2) lim\(\dfrac{\sqrt{2x^2-2}-\sqrt{4x-3}+2x-7}{9-x^2}\)

3) lim(\(x^3-1\sqrt{\dfrac{x}{x^2-1}}\)

Giúp giùm mình đi mấy bạn

Akai Haruma
5 tháng 3 2018 lúc 18:12

Câu 1:

\(\lim _{x\to +\infty}(2x-1-\sqrt{4x^2-4x-3})=\lim_{x\to +\infty}\frac{(2x-1)^2-(4x^2-4x-3)}{2x-1+\sqrt{4x^2-4x-3}}\) (liên hợp)

\(=\lim_{x\to +\infty}\frac{4}{2x-1+\sqrt{4x^2-4x-3}}=4\lim_{x\to +\infty}\frac{1}{2x-1+\sqrt{4x^2-4x-3}}\)

Ta thấy với \(x\to +\infty\Rightarrow 2x-1+\sqrt{4x^2-4x-3}\to +\infty\)

Do đó: \(\lim_{x\to +\infty}\frac{1}{2x-1+\sqrt{4x^2-4x-3}}=0\) (theo dạng \(\lim _{t\to \infty}\frac{1}{t}=0\) )

\(\Rightarrow \lim _{x\to +\infty}(2x-1-\sqrt{4x^2-4x-3})=0\)

 

Câu 3:

\(\lim_{x\to 1+} (x^3-1)\sqrt{\frac{x}{x^2-1}}=\lim_{x\to 1+}(x^2+x+1)\sqrt{\frac{x(x-1)^2}{x^2-1}}\)

\(=\lim_{x\to 1+}(x^2+x+1)\sqrt{\frac{x(x-1)}{x+1}}=(1+1+1)\sqrt{\frac{1.0}{1+1}}=0\)

 

 

Akai Haruma
5 tháng 3 2018 lúc 18:28

Câu 2:

\(\lim_{x\to 3}\frac{\sqrt{2x^2-2}-\sqrt{4x-3}+2x-7}{9-x^2}=\lim_{x\to 3}\frac{\sqrt{2x^2-2}-4}{9-x^2}-\lim_{x\to 3}\frac{\sqrt{4x-3}-3}{9-x^2}+\lim_{x\to 3}\frac{2x-6}{9-x^2}\)

Ta có:

\(\lim_{x\to 3}\frac{2x^2-2-16}{(\sqrt{2x^2-2}+4)(9-x^2)}=\lim_{x\to 3}\frac{2(x^2-9)}{(\sqrt{2x^2-2}+4)(9-x^2)}=\lim_{x\to 3}\frac{-2}{\sqrt{2x^2-2}+4}=\frac{-1}{4}\) (1)

\(\lim_{x\to 3}\frac{\sqrt{4x-3}-3}{9-x^2}=\lim_{x\to 3}\frac{4x-3-9}{(\sqrt{4x-3}+3)(9-x^2)}=\lim_{x\to 3}\frac{4(x-3)}{(\sqrt{4x-3}+3)(9-x^2)}\)

\(=\lim_{x\to 3}\frac{-4}{(\sqrt{4x-3}+3)(3+x)}=-\frac{1}{9}\) (2)

\(\lim _{x\to 3}\frac{2x-6}{9-x^2}=\lim_{x\to 3}\frac{2(x-3)}{9-x^2}=\lim_{x\to 3}\frac{-2}{x+3}=\frac{-1}{3}\) (3)

Từ \((1); (2); (3)\Rightarrow \lim_{x\to 3}\frac{\sqrt{2x^2-2}-\sqrt{4x-3}+2x-7}{9-x^2}=\frac{-1}{4}+\frac{1}{9}-\frac{1}{3}=\frac{-17}{36}\)

Akai Haruma
25 tháng 2 2018 lúc 13:27

$x$ tiến tới mấy hả bạn?


Các câu hỏi tương tự
Hoàng Anh
Xem chi tiết
Trần Hà Linh
Xem chi tiết
Trần Minh
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
camcon
Xem chi tiết
Hoàng Anh
Xem chi tiết
Hoàng Anh
Xem chi tiết
Hoàng Anh
Xem chi tiết
Tâm Cao
Xem chi tiết