1) Khang dinh nao sau day la dung
A. So do cua 1 cung luong giac luon la so thuc [0; π]
B. So do cua 1 cung luong giac la 1 so thuc tuy y
C. So do cua 1 cung luong giac luon khong vuot qua 2π
D. So do cua 1 cung luong giac luon la 1 so khong am
Một đường tròn có bán kính \(R=\dfrac{5}{\pi}\). Độ dài của cung \(\dfrac{3\pi}{4}\) trên đường tròn là ?
a) Rút gọn biểu thức
\(A=\dfrac{\sin4x+2\sin2x}{\sin4x-2\sin2x}.\cot\left(\dfrac{3\pi}{2}-x\right)\) (khi biểu thức có nghĩa)
b) Cho \(\cot\alpha=\dfrac{4}{3},3\pi< \alpha< \dfrac{7\pi}{2}\). Tính \(\cos\left(\dfrac{2\pi}{3}-\alpha\right)\)
1) Tim tap xac dinh D:
a) \(\left\{\dfrac{x\ne\dfrac{\Pi}{2}+k\Pi}{x\ne\dfrac{\Pi}{4}+k\dfrac{\Pi}{2}}\right\}\)
a) Cho \(\cot\alpha=-3\sqrt{2}\) với ( 90 < a <180 độ). Khi đó giá trị \(\tan\dfrac{\alpha}{2}+\cot\dfrac{\alpha}{2}\) bằng
b) Cho \(\sin x+\cos x=\dfrac{3}{2}\) thì sin 2a bằng
c) Cho \(\sin x+\cos x=\dfrac{1}{2}\) và \(0< x< \dfrac{\pi}{2}\). Tính giá trị sin x
1) Xet x ∈ [\(\dfrac{\Pi}{2}\) ; π ]. Neu x1 < x2 thi Sin x1.......Sin x2
a Cho , \(\sin\alpha=\frac{3}{5}\) \(0< \alpha< \frac{\pi}{2}\)Tính \(\sin\left(\alpha+\frac{\pi}{6}\right)\), \(\sin2\alpha\)
b Cho , \(\sin\alpha=-\frac{4}{5}\) \(\frac{\pi}{2}< \alpha< \pi\) Tính \(\cos\left(\alpha-\frac{\pi}{3}\right)\), \(\cos2\alpha\)
Tính C = \(cos\frac{\Pi}{9}+cos\frac{2\Pi}{9}+....+cos\frac{8\Pi}{9}+cos\Pi\)
A . 0
B . 1
C . 2
D . -1
Rút gọn biểu thức: \(A=4\sin x\sin\left(x+\frac{\pi}{2}\right)\sin\left(3x+\pi\right)-\cos\left(5\pi-x\right)\)