\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(3-x\right)^2}=1\)
\(\Leftrightarrow\left|x-1\right|+\left|3-x\right|=1\)
Mà \(\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2>1\)
\(\Rightarrow\) Phương trình vô nghiệm
2/ \(\Leftrightarrow\left(2x-3\right)\left(x^2-x+1\right)< 0\) (1)
Do \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\left(1\right)\Leftrightarrow2x-3< 0\)
\(\Rightarrow x< \frac{3}{2}\)