1) \(2VT=\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ac=2\left(ab+bc+ac\right)=2VP\)
\(VT\ge VP\)
2) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)
1) \(2VT=\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\ge2ab+2bc+2ac=2\left(ab+bc+ac\right)=2VP\)
\(VT\ge VP\)
2) \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)
Cho 3 số a,b,c ≠ 0 thỏa mãn: \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
Tính giá trị của biểu thức M= \(\dfrac{ab+bc+ca}{a^2+b^2+c^2}\)
cho a,b,c là các số khác 0 thoả mãn \(\dfrac{ab+ac}{1}=\dfrac{bc+ba}{3}=\dfrac{ca+cb}{4}\) thì \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\)
Cho 3 số a , b, c ≠ 0 thỏa mãn
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
Tính giá trị của biểu thức :
\(M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}\)
cho a,b,c là ba số khác 0 thỏa mãn: \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\) (với giả thiết các tỉ số đều có nghĩa). Tính giá trị biểu thức M = \(\dfrac{ab+bc +ca}{a^2+b^2+c^2}\)
Bài 1: Với a, b,c là các số nguyên dương . CMR
a)\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
b) \(\left(a+b+c\right).\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Bài 2 :Với a, b, c \(\ge\) 0. CMR
a, \(a +b\ge2\sqrt{ab}\)
b, \(a +b +c\ge3\sqrt{abc}\)
( giải theo toán lớp 7 được không ạ ! 0...0
Cho tam giác ABC có BC=a; AC=b; AB=c và trung tuyến CD=m.
CMR \(\dfrac{a+b-c}{2}< m< \dfrac{a+b}{2}\)
Cho 3 số dương a,b,c biết 0≤ a ≤ b ≤ c ≤ 1
Chứng minh rằng \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\) ≤ 2
Cho c2==ab . Chứng minh rằng :
a) \(\dfrac{a^{2^{ }}+c^2}{b^{2^{ }}+c^{2^{ }}}=\dfrac{a}{b}\)
b)\(\dfrac{b^{2^{ }}-a^{2^{ }}}{a^{2^{ }}+c^2}=\dfrac{b-a}{a}\)
a, cho a,b,c \(\in\) R và a,b,c \(\ne\) 0 thỏa mãn \(b^2=ac\) . CMR : \(\dfrac{a}{c}=\dfrac{\left(a+2013b\right)^2}{\left(b+2013c\right)^2}\)
b, cho cá số a,b,c khác 0 thỏa mãn \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tính M=\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)