CHỨNG MINH
a) \(\frac{\left(\sqrt{a}+1\right)^2-4\sqrt{a}}{\sqrt{a}-1}+\frac{a+\sqrt{a}}{\sqrt{a}}=2\sqrt{a}\) \(\left(a>0;a\ne1\right)\)
b) \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\) \(\left(x\ge0;y\ge0\right)\)
c) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}:\frac{a-b}{\sqrt{a}-\sqrt{b}}=1\) \(\left(a>0;b>0;a\ne b\right)\)
d) \(\left[\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\right]:\sqrt{b}=2\) \(\left(a>0;b>0\right)\)
Giúp mình với, cảm ơn mn <3
Bài 1: Chia hai căn bậc hai:
a) \(\frac{\sqrt{96}+\sqrt{300}-\sqrt{54}}{\sqrt{6}}\)
b) \(\frac{\sqrt{12+8x-x^2-x^3}}{\sqrt{3-x}}\)
Bài 2: Chứng minh rằng khi -3 <x<-1 thì:
\(\sqrt{x^2-x-2}:\sqrt{\frac{x-2}{x^2+4x+3}}=-\left(x+1\right)\sqrt{x+3}\)
Bài 3: Cho biểu thức A = \(\left(1+\frac{x}{\sqrt{x^2-1}}\right):\left(x+\sqrt{x^2-1}\right)\)
a) Rút gọn biểu thức
b) Tính giá trị của A tại x = \(\frac{\sqrt{8-2\sqrt{3}}}{2}\)
Bài 4: Giải phương trình:
a) \(\left(1+\sqrt{5}\right)x+\sqrt{45}=x+\sqrt{320}\)
b) \(6x-3\sqrt{3x-6}=12\)
Bài 1: tính:
a) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{4,5}+\frac{2}{5}\sqrt{50}\right):\frac{4}{15}\sqrt{\frac{1}{8}}\)
Bài 2: Rút gọn:
A= \(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)Đk: (a ≥ 0, a ≠ 1)
B= \(\frac{a-3\sqrt{a}-4}{\sqrt{a}+1}\)
Bài 3: giải phương trình
a) \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
b) \(\frac{x-1}{\sqrt{x-1}}=\sqrt{x-1}\)
Bài 4: tìm giá trị nhỏ nhất:
A=\(\frac{a-\sqrt{x}+3}{\sqrt{x}+2}\) (x ≥ 0)
Chứng minh :
a) \(\dfrac{x^2+2}{\sqrt{x^2+1}}\ge2\)
b) \(\dfrac{2x^2+1}{\sqrt{4x^2+1}}\ge1\)
Rut gon
a)\(\frac{\left(\sqrt{x}+1\right).\left(x-\sqrt{xy}\right).\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right).\left(\sqrt{x^3}+x\right)}\)
b) \(\frac{\left(2-\sqrt{x}\right)^2-\left(\sqrt{x}+3\right)}{1+2.\sqrt{x}}\)
Rut gon
a)\(\frac{\left(\sqrt{x}+1\right).\left(x-\sqrt{xy}\right).\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right).\left(\sqrt{x^3}+x\right)}\)
b) \(\frac{\left(2-\sqrt{x}\right)^2-\left(\sqrt{x}+3\right)}{1+2.\sqrt{x}}\)
Rút gọn các biểu thức:
a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\) ( a <0 ; b # 0 )
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) ( x lớn hơn hoặc = 0)
c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\) ( x<3 tại x = 0,5)
d) \(\dfrac{x-1}{\sqrt{y}-1}.\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\) ( x # 1; y >= 0, y #1)
e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\) ( x > -2 tại x = -\(\sqrt{2}\))
bài 1: tìm x sao cho :
a) \(\frac{\sqrt{x}-2}{\sqrt{x}+2}\)< 0
b) \(\frac{3}{\sqrt{x}-5}\)> 0
c) \(\frac{\sqrt{x}-1}{\sqrt{x}-2}\)< 1
d) \(\frac{\left(x+3\right)\sqrt{6-x}}{\sqrt{8-x}}\) ≥ 0
tìm điều kiện xác định .rút gọn
\(\left(\frac{\sqrt{x}}{x}-\frac{1}{2\sqrt{x}}\right):\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)