Câu 1:
A=a^3-13a=a^3-a-12a
=a(a-1)(a+1)-12a
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
mà 12a chia hết cho 6
nên A chia hết cho 6
Câu 1:
A=a^3-13a=a^3-a-12a
=a(a-1)(a+1)-12a
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
mà 12a chia hết cho 6
nên A chia hết cho 6
Ch a,b là số nguyên thỏa mãn (16a+17b)(17a+16b) chia hết cho 11.
Chứng minh: (16a+17b)(17a+16b) chia hết cho 121.
Cho x,y,z là 3 số nguyên dương , nguyên tố cùng nhau và \(\left(x-z\right)\left(y-z\right)=z^2\) . Đặt a = xyz . Chứng minh rằng a là số chính phương
bài 1 : Tìm GTNN(min) : A = \(\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}x\)
bài 2 : Cho P(x) = ax3 + bx2 + cx + d với a,b,c,d \(\in\) Z
Biết P(0) và P(1) là số lẻ
Chứng minh rằng : P(x) không thể có nghiệm là số nguyên
Cho hàm số \(y=f\left(x\right)=ax^2+bx+1\)
a) Biết f(1) = 1 ; f(-1) = 3 . Tìm a,b
b) với a,b tìm được ở câu a . Chứng minh rằng với mọi số tự nhiên n,n >1 thì phân số \(\dfrac{n}{f\left(n\right)}\) tối giản
Chứng minh rằng với mọi số n nguyên dương đều có:
A= \(5^n\left(5^n+1\right)-6^n\left(3^n+2\right)⋮91\)
Cho \(\left|a-c\right|< 3,\left|b-c\right|< 2\) . Chứng minh rằng \(\left|a-b\right|< 5\)
Với a,b,c là số dương chứng minh rằng :
a, \(\left(a+b\right)\times\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
b, \(\left(a+b+c\right)\times\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
1 (5 điểm)
a) Tính giá trị biểu thức: \(L=\left(-\dfrac{3}{4}+\dfrac{4}{11}\right):\dfrac{7}{11}+\left(-\dfrac{4}{7}+\dfrac{7}{11}\right):\dfrac{7}{11}\)
b) Tính giá trị nhỏ nhất của biểu thức: \(L=\left[\left(x+1\right)^2+3\right]^2+\left|y-5\right|+2008\)
2(4 điểm)
a) Tìm 3 số x;y;z thỏa mãn \(20x=15y=12z\) và \(2x^2+2y^2-3z^2=-100\)
b) Cho đa thức \(L_1\left(x\right)=x^2+2xm+m^2\) và \(L_2\left(x\right)=x^2+\left(2x+1\right)x+m^2\)
Tìm m biết \(L_1\left(1\right)=L_2\left(-1\right)\)
3(4 điểm)
a) Chứng minh \(5^{n+3}-3^{n+3}+5^{n+2}-3^{n+1}⋮60\) với mọi n thuộc N
b) Chứng minh \(\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2017}{4^{2017}}< \dfrac{1}{2}\)
6 điểm được free ạ =)))))
Chứng minh đẳng thức:
a)\(\dfrac{1}{a\left(a+1\right)}=\dfrac{1}{a}-\dfrac{1}{a+1}\)
b)\(\dfrac{2}{a\left(a+1\right)\left(a+2\right)}=\dfrac{1}{a\left(a+1\right)}-\dfrac{1}{\left(a+1\right)\left(a+2\right)}\)