1)
\(M=\dfrac{1}{3}x^2+2x+10\)
\(=\dfrac{1}{3}.\left(x^2+6x+30\right)\)
\(=\dfrac{1}{3}\left(x^2+2.x.3+9\right)+7\)
\(=\dfrac{1}{3}.\left(x+3\right)^2+7\) \(\ge\) 7 với \(\forall\) x
=> M luôn dương
=> đpcm
2)
a) \(2x-x^2-15\)
\(=-\left(x^2-2x+15\right)\)
\(=-\left(x^2-2x+1\right)-14\)
\(=-\left(x-1\right)^2-14\) \(\le-14\) với \(\forall\) x
=> \(2x-x^2-15\) luôn âm
=> đpcm
b) \(-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-x^2-2x+x+2\)
\(=-x^2-x-3\)
\(=-\left(x^2+x+3\right)\)
\(=-\left(x^2+2.\dfrac{1}{2}.x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\) với \(\forall\) x
=> \(-5-\left(x-1\right)\left(x+2\right)\) luôn âm
=> đpcm
\(M=\dfrac{1}{3}x^2+2x+10=\dfrac{1}{3}\left(x^2+6x+9\right)+7\)
\(=\dfrac{1}{3}\left(x+3\right)^2+7\)
Ta có:
\(\dfrac{1}{3}\left(x+3\right)^2\ge\forall x\Rightarrow\dfrac{1}{3}\left(x+3\right)^2+7>0\)
=>đpcm
\(2,a,2x-x^2-15\)
\(=-\left(x^2-2x+1\right)-14\)
\(=-\left(x-1\right)^2-14\)
Ta có:
\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-14< 0\)
=> đpcm
\(b,-5-\left(x-1\right)\left(x+2\right)\)
\(=-5-\left(x^2+x-2\right)\)
\(=-5-x^2-x+2\)
\(=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\)
Ta có:
\(-\left(x+\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x+\dfrac{1}{2}\right)-\dfrac{11}{4}< 0\)=> đpcm