1) ta có : \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\)
thay \(x+y=1\) và \(xy=-1\) vào ta có : \(\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=\left(1\right)^3-3\left(-1\right).1=1+3=4\)
vậy \(x^3+y^3=4\) khi \(x+y=1\) và \(xy=-1\)
Ta có:
\(x+y=1\Rightarrow\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+2xy+y^2=1\)
\(\Leftrightarrow x^2+y^2=1-2xy\)
\(\Leftrightarrow x^2+y^2=1+2=3\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=1\left(3-\left(-1\right)\right)\)
\(=4\)
2, Ta có:
\(x+y=1\Rightarrow\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+y^2=1-2xy\)
\(P\left(x\right)=2\left(x^3+y^2\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)
\(=2\left(x^2+y^2-xy\right)-3\left(1-2xy\right)\)
\(=2\left(1-2xy-xy\right)-3+6xy\)
\(=2\left(1-3xy\right)-3+6xy\)
\(=2-6xy-3+6xy\)
\(=-1\)
ta có : \(P\left(x\right)=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(\left(x+y\right)^3-3xy\left(x+y\right)\right)-3\left(\left(x+y\right)^2-2xy\right)\)
thay \(x+y=1\) vào
ta có : \(P\left(x\right)=2\left(\left(x+y\right)^3-3xy\left(x+y\right)\right)-3\left(\left(x+y\right)^2-2xy\right)\)
\(=2\left(1^3-3xy.1\right)-3\left(1^2-2xy\right)=2\left(1-3xy\right)-3\left(1-2xy\right)\)
\(=2-6xy-3+6xy=-1\)
vậy \(P\left(x\right)=-1\) khi \(x+y=1\)