Trong mặt phẳng Oxy cho tam giác ABC có A(3;1), B(-4;2), C(4;-2) a) tính tọa độ các vecto AB, AC, BC b) tính độ dài các vecto AB, AC, BC c) gọi AH là đường cao của tam giác ABC hạ từ A. Tìm tọa độ điểm H
Câu 1 : Cho tam giác ABC : a=8, b=10, cosC = \(\dfrac{-1}{32}\). Tính c, cosA, cosB, diện tích, bán kính đường tròn ngoại tiếp, nội tiếp tam giác.
Câu 2 : Cho tứ giác ABCD có I, J là trung điểm AC, BD.
a) Chứng minh rằng : vecto AB + vecto CD = 2 vecto IJ
b) Gọi M là trung điểm BC, sao cho vecto AB = vecto a và vecto CA = vecto b. Tính vecto AM theo hai vecto a và vecto b
Cho tam giác ABC với các cạnh AB = c, BC = a, CA = b. Tìm điểm M sao cho các vectơ aMA + bMB + cMC = vecto 0
cho tam giác ABC, D và E là các điểm thỏa vector AD= vector AB+ vector AC
a Cm C là trung điểm DE
b Khi tam giác ABC là tam giác đều cạnh a, tính / vecto AD + vector BE /
Cho △ABC biết A(0; 3); B(1; 2); C(-3; 5)
a)Viết phương trình tổng quát AB,AC,BC, đường cao AH và trung tuyến AM
b)Tìm toạ độ trực tâm K
c) Viết phương trình phân giác AD của △ABC
d) Viết đường trung trực của AB
Trong mặt phẳng hệ tọa độ Oxy. HÃy chọn đề sai
A. M thuộc Ox <=> ym=0
B. M thuộc Õ <=> xm=0
C. Tọa độ của vecto OM cùng tọa độ điểm M
D. vecto a = vecto 2i + vecto 3j <=> vecto a = (2;3)
Cho hình thang ABCD có \(\widehat{A}\) = \(\widehat{B}\) = 900, AB = BC = \(\dfrac{AD}{2}\) , pt CD: 3x + y - 4 = 0 A(-2; 0). Tìm toạ độ B (yB > 0)
cho hình bình hành ABCD có M, N lần lượt là trung điểm của DC và DA. phân tích các vecto \(\overrightarrow{AB},\overrightarrow{DA},\overrightarrow{BC},\overrightarrow{BD}\) theo 2 vecto \(\overrightarrow{a},\overrightarrow{b}\) với \(\left\{{}\begin{matrix}\overrightarrow{a}=\overrightarrow{AM}\\\overrightarrow{b}=\overrightarrow{BN}\end{matrix}\right.\)
Trong mặt phẳng Oxy cho A(2;2). Tìm toạ độ điểm B trên đường thẳng (d): y = 2 – x và toạ độ điểm C trên đường thẳng (d’): y = 8 – x sao cho tam giác ABC vuông cân tại A