Bài 1:
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}.\)
\(\Rightarrow\frac{3a}{a}+\frac{b+c}{a}=\frac{3b}{b}+\frac{a+c}{b}=\frac{3c}{c}+\frac{a+b}{c}\)
\(\Rightarrow3+\frac{b+c}{a}=3+\frac{a+c}{b}=3+\frac{a+b}{c}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}.\)
+ TH1: \(a+b+c=0.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
Ta có: \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(\Rightarrow P=\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}\)
\(\Rightarrow P=\left(-1\right)+\left(-1\right)+\left(-1\right)\)
\(\Rightarrow P=-3.\)
+ TH2: \(a+b+c\ne0.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{b+c+a+c+a+b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{b+c}{a}=2\\\frac{a+c}{b}=2\\\frac{a+b}{c}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b+c=2a\\a+c=2b\\a+b=2c\end{matrix}\right.\)
Lại có: \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(\Rightarrow P=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}\)
\(\Rightarrow P=2+2+2\)
\(\Rightarrow P=6.\)
Vậy \(P=-3\) hoặc \(P=6.\)
Chúc bạn học tốt!