1.
\(a^2=3-2\sqrt{2}=\sqrt{9}-\sqrt{9-1}\)
2.
\(A=\left(x+y+1-2\sqrt{xy}-2\sqrt{x}+2\sqrt{y}\right)+\left(x-4\sqrt{x}+4\right)+2015\)
\(A=\left(\sqrt{x}-\sqrt{y}-1\right)^2+\left(\sqrt{x}-2\right)^2+2015\ge2015\)
\(A_{min}=2015\) khi \(\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)