Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Kim Anh

1) Cho :

\(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

Với \(x,y,z\in Z\). CMR : \(A⋮6\)

2) Tìm số dư trong phép chia :

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2009\) cho \(X^2+100x+21\)

Nguyễn Quang Định
28 tháng 7 2017 lúc 11:48

Ta có: \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

Áp dụng vào bài

\(A=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Nếu trong tích \(\left(x+y\right)\left(y+z\right)\left(x+z\right)\) có ít nhất 2 thừa số chia hết cho 2 thì tích đó chia hết cho 2

Nếu cả 3 thừa số đều không chia hết cho 2, ta có: \(x+y=2k+1;y+z=2q+1\)

\(\Rightarrow2y+x+z=2k+2q+2\)

\(\Leftrightarrow x+z=2k+2q+2-2y\)

\(\Leftrightarrow x+z=2\left(k+q+1-y\right)\)

Vế phải chia hết cho 2 nên vế trái cũng chia hết cho 2

Vậy: \(\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮2\forall x,y,z\in Z\)

\(\Rightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)⋮6\forall x,y,z\in Z\)

Vậy: \(A⋮6\forall x,y,z\in Z\)


Các câu hỏi tương tự
Đặng Thị Cẩm Tú
Xem chi tiết
junghyeri
Xem chi tiết
Nguyễn Phương Lợi
Xem chi tiết
Tuan Minh Do Xuan
Xem chi tiết
vũ quỳnh trang
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Huỳnh Giang
Xem chi tiết
Benio Adashino
Xem chi tiết
Mai Thành Đạt
Xem chi tiết