Cho \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+..+\dfrac{1}{37.38}\)và \(B=\dfrac{1}{20.38}+\dfrac{1}{21.37}+...+\dfrac{1}{38.20}\)
Chứng minh rằng: \(\dfrac{A}{B}\)là 1 số nguyên
Nhanh nha 1h mik phải nộp r
1/ Tính
\(\dfrac{\left(1+2+3+...+100\right).\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\)
2/ Tìm x:
\(\dfrac{x+4}{2000}+\dfrac{x+3}{2001}=\dfrac{x+2}{2002}+\dfrac{x+1}{2003}\)
3/ Cho \(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
Chứng minh: \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
4/ Tìm \(a,b\varepsilon Q:a+b=a.b=a:b\)
Giúp mik nha mai mik cần rồi.
a)tìm các cặp số nguyên x;y thỏa mãn (2x-)(x+1)=|y+1|
b)\(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+...+\left|x+\dfrac{1}{97.99}\right|=50x\)
cho A=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)hãy so sánh A với \(\dfrac{-1}{2}\)
Tìm y biết:
a) 2y . (y - \(\dfrac{1}{7}\)) = 0
b) \(-\dfrac{2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
Tìm các số x thỏa mãn:
a) \(x.\left(x-\dfrac{4}{7}\right)>0\)
b)\(\left(x-\dfrac{2}{5}x^2\right)< 0\)
c)\(\left(x-\dfrac{2}{5}\right).\left(x+\dfrac{3}{7}\right)>0\)
d)\(\left(x-\dfrac{2}{5}\right).\left(x+\dfrac{3}{7}\right).\left(x+\dfrac{3}{4}\right)>0\)
(* dấu . là dấu nhân nha bạn ^-^)
1)Sắp xếp theo thứ tự tăng dần
\(\left(\dfrac{-2}{5}\right)^3;\left(0,3\right)^2;\left(\dfrac{-3}{4}\right)^3;\left(-1,2\right)^2\)
2)Tìm x và y sao cho
\(\left(\dfrac{x}{y}\right)=\left(\dfrac{x}{y}\right)^2\)
3)Chứng minh rằng
a)\(16^5+2^{15}\) chia hết cho 33
b)\(333^{555}+555^{333}\) chia hết cho 37
4)Tìm x và y biết
a)\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
b)\(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
5)Tính giá trị của x
a)\(8^x>16\)
b)\(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
c)\(\left(\dfrac{1}{2}\right)^{x-1}=8\)
d)\(3^x< 16\)
e)\(3^x< 27\)
Help me mai 5/8 6h mik đi học rồi
Cho x,y,z là các số dương thỏa mãn các điều kiện \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\) và \(\left|x+y\right|=\left|z-1\right|\). Tìm x,y,z
1) Chứng minh rằng \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\)
2) Cho a,b,c là ba số thực khác 0, thỏa mãn điều kiện
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Hãy tính gt biểu thức \(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
3) Tìm 1 nghiệm của đa thức P(x) = \(x^3+ax^2+bx+c\)
Biết rằng đa thức có nghiệm và a + 2b + 4c = \(\dfrac{-1}{2}\)
Bài 1: Tính
\(N=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+\dfrac{1}{14.19}+...+\dfrac{1}{44.49}\right).\dfrac{1-3-5-7-...-9}{89}\)
Bài 2 : Rút gọn
a) A = |2x + 4,6| - 2x + 15,4
b) B = |x + 7,2| - |x - 1,2|
c) C = 8,5x - 19, 5 - |1,5x + 4,5|
d) D = 8,5 + x - |8,5 - x|
Bài 3 : Tìm x và y \(\in\) N.Biết 25 - y2 = 8(x - 2009)2
Bài 4 ; Cho :
\(A=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
So sánh phân số sau vs \(\dfrac{-1}{2}\)
Cho x, y, z thỏa mãn \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\). Chứng minh rằng: \(\left(x-z\right)^3=8\cdot\left(x-y\right)^2\left(y-z\right)\)