1. Cho △ABC có AB là cạnh lớn nhất, BC là cạnh nhỏ nhất. Chứng minh rằng \(\widehat{C}>60^o\), \(\widehat{A}\le60^o\).
2. Cho tam giác ABC có M là trung điểm BC.
a) Giả sử AB < AC. Chứng minh \(\widehat{MAC}< \widehat{BAM}\)
b) Giả sử \(\widehat{MAC}< \widehat{BAM}\). Chứng minh AB < AC.
c) Gọi N là trung điểm AC, AM cắt BN tại G. Giả sử AM ⊥ BN. Chứng minh 2AC > BC.
3.
a) Cho △ABC cân tại A, D là điểm bất kì trong △ABC sao cho \(\widehat{ADB}< \widehat{ADC}\). Chứng minh BD > DC
b) Cho △ABC vuông tại A. Chứng minh rằng \(AB^{2017}+AC^{2017}< BC^{2017}\)
Bài 2 :
a, - Kéo dài AM tới điểm D sao cho AM = MD .
- Ta có : \(\widehat{M_1}\) và \(\widehat{M_2}\) đối đỉnh .
=> \(\widehat{M_1}\) = \(\widehat{M_2}\)
- Xét \(\Delta ABM\) và \(\Delta DCM\) có :
\(\left\{{}\begin{matrix}BM=CM\left(GT\right)\\\widehat{M_1}=\widehat{M_2}\left(cmt\right)\\AM=DM\left(GT\right)\end{matrix}\right.\)
=> \(\Delta ABM\) = \(\Delta DCM\) ( c - g - c )
=> \(\widehat{A_1}=\widehat{D_2}\) ( góc tương ứng )
=> \(AB=CD\) ( cạnh tương ứng )
Mà \(AB< AC\left(GT\right)\)
=> \(CD< AC\)
=> \(\widehat{MAC}< \widehat{ADC}\) ( quan hệ cạnh góc đối diện )
Mà \(\widehat{ADC}=\widehat{BAM}\) ( cmt )
=> \(\widehat{BAM}>\widehat{MAC}\) ( đpcm )
Nguyễn Ngọc Lộc Nguyễn Lê Phước ThịnhJeong Soo In?Amanda?Trần Quốc KhanhPhạm Lan HươngNatsu Dragneel 2005Trung NguyenNo choice teenPhạm Thị Diệu HuyềnTrên con đường thành công không có dấu chân của kẻ lười biếngNguyễn Thành TrươngAkai HarumaNguyễn Việt LâmHoàng YếntthNguyễn Văn Đạt