1. Cho A=[–4;7] và B=(–\(\infty\);–2)∪ (3;+\(\infty\)). Khi đó A∩B là:
A) [–4;–2)∪ (3;7]
B) [–4;–2)∪ (3;7).
C) (–\(\infty\);2]∪ (3;+\(\infty\))
D)(–\(\infty\);–2)∪ [3;+\(\infty\)).
2. Cho A=(–\(\infty\);–2]; B=[3;+\(\infty\)) và C=(0;4). Khi đó tập (A∪B)∩ C là:
A) [3;4].
B) (–\(\infty\);–2]∪ (3;+\(\infty\)).
C) [3;4).
D)(–\(\infty\);–2)∪ [3;+\(\infty\)).
3. Cho A = (−∞; 5), B = (−∞; a) với a là số thực. Tìm a để A con B
A. a = 5.
B. a ≤ 5.
C. a ≥ 5.
D. B\A = B