Lời giải:
Ta có: \(x+y+z=0\Rightarrow (x+y+z)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2(xy+yz+xz)=0\Leftrightarrow xy+yz+xz=\frac{-a^2}{2}\)
Để ý rằng:
\(x^4+y^4+z^4=(x^2+y^2+z^2)^2-2(x^2y^2+y^2z^2+z^2x^2)\)
\(=a^4-2[(xy+yz+xz)^2-2xyz(x+y+z)]\)
\(=a^4-2(xy+yz+xz)^2=a^4-2.\frac{a^4}{4}=\frac{a^4}{2}\)