a/ \(\left(4x^2y^3\right)\left(x^ny^7\right)=4x^5y^{10}\)
\(\Leftrightarrow4x^{2+n}y^{3+7}=4x^5y^{10}\)
\(\Rightarrow2+n=5\Rightarrow n=3\)
Vậy \(n=3\)
b/ \(\left(-7x^4y^m\right)\left(-5x^ny^4\right)=35x^9y^{15}\)
\(\Leftrightarrow35x^{4+n}y^{m+4}=35x^9y^{15}\)
\(\Rightarrow\left[{}\begin{matrix}4+n=9\\m+4=15\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=5\\m=11\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}m=11\\n=5\end{matrix}\right.\)
a) \(\left(4x^2\times y^3\right)\left(x^n\times y^7\right)=4x^5y^{10}\)
\(\Rightarrow4\times\left(x^2\times x^n\right)\times\left(y^3\times y^7\right)=4x^5y^{10}\)
\(\Rightarrow4x^{2+x}y^{10}=4x^5y^{10}\)
\(\Rightarrow x^{2+n}=x^5\)
\(\Rightarrow2+n=5\)
\(\Rightarrow n=5-2\)
\(\Rightarrow n=3\)
Vậy \(n=3\).
b) \(\left(-7x^4y^m\right)\left(-5x^ny^4\right)=35x^9y^{15}\)
\(\Rightarrow\left[\left(-7\right)\times\left(-5\right)\right]\times\left(x^4\times x^n\right)\times\left(y^m\times y^4\right)=35x^9y^{15}\)
\(\Rightarrow35x^{4+n}y^{m+4}=35x^9y^{15}\)
\(\Rightarrow\left\{{}\begin{matrix}x^{4+n}=x^9\\y^{m+4}=y^{15}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4+n=9\\m+4=15\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n=9-4\\m=15-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n=5\\m=9\end{matrix}\right.\)
Vậy \(m=9\) và \(n=5\).