Bài 2: Phương trình lượng giác cơ bản

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Hoàng Thanh
16 tháng 7 2022 lúc 16:42

\(1,cos\left(2x+\dfrac{\pi}{6}\right)=0.\\ \Leftrightarrow2x+\dfrac{\pi}{6}=k\pi.\\ \Leftrightarrow x=\dfrac{-\pi}{12}+k\dfrac{\pi}{2},k\in Z.\)

\(2,sin\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=1.\\ \Leftrightarrow\dfrac{\pi}{4}-\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi.\\ \Leftrightarrow-\dfrac{x}{2}=\dfrac{\pi}{4}+k2\pi.\\ \Leftrightarrow x=\dfrac{-\pi}{2}-k\pi,k\in Z.\)

\(3,sin\left(3x-1\right)=\dfrac{1}{2}.\\ \Leftrightarrow sin\left(3x-1\right)=sin\dfrac{\pi}{6}.\\ \Leftrightarrow\left[{}\begin{matrix}3x-1=\dfrac{\pi}{6}+k2\pi.\\3x-1=\pi-\dfrac{\pi}{6}+k2\pi.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{\pi}{6}+1+k2\pi.\\3x=\dfrac{5}{6}\pi+1+k2\pi.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{18}+\dfrac{1}{3}+k\dfrac{2}{3}\pi.\\x=\dfrac{5}{18}\pi+\dfrac{1}{3}+k\dfrac{2}{3}\pi.\end{matrix}\right.\) \(\left(k\in Z\right).\)

\(4,sin4x=sin\left(x+60^o\right).\\ \Leftrightarrow sin4x=sin\left(x+\dfrac{\pi}{3}\right).\Leftrightarrow\left[{}\begin{matrix}4x=x+\dfrac{\pi}{3}+k2\pi.\\4x=\pi-x-\dfrac{\pi}{3}+k2\pi.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{9}+k\dfrac{2}{3}\pi.\\x=\dfrac{2}{15}\pi+k\dfrac{2}{5}\pi.\end{matrix}\right.\) \(\left(k\in Z\right).\)

\(5,cos\left(x-\dfrac{5\text{​​}\pi}{4}\right)=cos\left(2x+\text{​​}\dfrac{\pi}{4}\right).\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{5\text{​​}\pi}{4}=2x+\text{​​}\dfrac{\pi}{4}+k2\pi.\\x-\dfrac{5\text{​​}\pi}{4}=-2x-\text{​​}\dfrac{\pi}{4}+k2\pi.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\pi-k2\pi.\\x=\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\end{matrix}\right.\) \(\left(k\in Z\right).\)

\(6,sin2x=cos\left(x+\text{​​}\dfrac{\text{​​}\pi}{3}\right).\\ sin2x=sin\left(\dfrac{\pi}{6}-x\right).\\ \Leftrightarrow\left[{}\begin{matrix}2x=\text{​​}\text{​​}\dfrac{\pi}{6}-x+k2\pi.\\2x=\pi-\dfrac{\pi}{6}+x+k2\pi.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{18}+k\dfrac{2}{3}\pi.\\x=\dfrac{5}{6}\pi+k2\pi.\end{matrix}\right.\)\(\left(k\in Z\right).\)


Các câu hỏi tương tự
Nkjuiopmli Sv5
Xem chi tiết
Nkjuiopmli Sv5
Xem chi tiết
Trần Việt An
Xem chi tiết
Trần Việt An
Xem chi tiết
NTC Channel
Xem chi tiết
NTC Channel
Xem chi tiết
Nkjuiopmli Sv5
Xem chi tiết
Nhi Trần
Xem chi tiết