Lời giải:
\(\lim\limits_{x\to 0}\frac{\sqrt{4+x}(\sqrt[3]{8+3x}-2)+2(\sqrt{4+x}-2)}{x(x+1)}=\lim\limits_{x\to 0}\frac{\sqrt{4+x}.\frac{3x}{\sqrt[3]{(8+3x)^2}+2\sqrt[3]{8+3x}+4}+2.\frac{x}{\sqrt{4+x}+2}}{x(x+1)}\)
\(=\lim\limits_{x\to 0}\frac{\sqrt{x+4}.\frac{3}{\sqrt[3]{(8+3x)^2}+2\sqrt[3]{8+3x}+4}+\frac{2}{\sqrt{4+x}+2}}{x+1}=1\)