d)=\(\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}=\sqrt{2}\)
e)\(=\dfrac{\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}-4\left(\sqrt{2}+1\right)+3\sqrt{2}\)
\(=4\sqrt{2}-4\sqrt{2}-4\)
f)\(=\dfrac{\sqrt{6}}{2}-\sqrt{3}-1-2\left(1+\sqrt{3}\right)=\dfrac{\sqrt{6}}{2}-3\sqrt{3}-3\)

