\(a,\left(2x-x^2\right)\left(2x^2-3x-2\right)=0\\ \Leftrightarrow x\left(2-x\right)\left(x-2\right)\left(2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow A=\left\{-\dfrac{1}{2};0;2\right\}\\ b,\left(2x+1\right)\left(x^2-5x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x^2-5x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\\x=2\end{matrix}\right.\Leftrightarrow B=\left\{-\dfrac{1}{2};2;3\right\}\)
\(c,\left(2x+1\right)\left(x^2-5x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\\x=2\end{matrix}\right.\Leftrightarrow C=\left\{2;3\right\}\left(x\in N\right)\\ d,\left(x-1\right)\left(3x^2-11x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\3x^2-11x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow D=\left\{-\dfrac{1}{3};1;4\right\}\)
\(e,2x^3-3x^2-5x=0\Leftrightarrow x\left(2x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-1\end{matrix}\right.\Leftrightarrow E=\left\{-1;0\right\}\left(x\in Z\right)\\ f,F=\left\{-2;-1;0;1;2\right\}\)