tìm x à bạn
\(a,< =>\left(x-2\right)\left(x+2\right)-8\left(x-2\right)=0< =>\left(x-2\right)\left(x+2-8\right)=0\)
\(< =>\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\)\(=>\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
b,\(< =>\left(x-2\right)^2-9\left(x-2\right)=0< =>\left(x-2\right)\left(x-2-9\right)=0\)
\(=>\left[{}\begin{matrix}x-2=0\\x-11=0\end{matrix}\right.\)\(=>\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)
c,\(< =>\left(2x-3\right)^2-\left(5-x\right)^2=0\)
\(< =>\left(x+2\right)\left(3x-8\right)=0< =>\left[{}\begin{matrix}x=-2\\x=\dfrac{8}{3}\end{matrix}\right.\)
a. x2 - 4 = 8(x - 2)
⇔ (x - 2)2 = 8(x - 2)
⇔ x - 2 = 8
⇔ x = 8 + 2 = 10
b. x2 - 4x + 4 = 9(x - 2)
⇔ (x - 2)2 = 9(x - 2)
⇔ x - 2 = 9
⇔ x = 9 + 2 = 11
c. 4x2 - 12x + 9 = (5 - x)2
⇔ (2x - 3)2 = (5 - x)2
⇔ 2x - 3 = 5 - x
⇔ 2x + x = 5 + 3
⇔ 3x = 8
⇔ x = \(\dfrac{8}{3}\)
a: Ta có: \(x^2-4=8\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-8\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
b: Ta có: \(x^2-4x+4=9\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^2-9\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=11\end{matrix}\right.\)
c: Ta có: \(4x^2-12x+9=\left(5-x\right)^2\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(x-5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x+5\right)\left(2x-3+x-5\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{8}{3}\end{matrix}\right.\)