Giải:
a)Xét Δ ABD và Δ ACD có:
AD là cạnh chung
AB=AC (vì Δ ABC cân tại A)
BD=CD (vì D là trung điểm của BC)
Vậy: Δ ABD = Δ ACD (c.c.c)
b)Vì Δ ABD = Δ ACD (chứng minh trên)
nên: \(\widehat{ADB}=\widehat{ADC}\) (hai góc tương ứng)
mà: \(\widehat{ADB}+\widehat{ADC}=180^0\) (kề bù)
nên: \(\widehat{ADB}+\widehat{ADB}=180^0\)
\(2\widehat{ADB}=180^0\)
\(\widehat{ADB}=\dfrac{180^0}{2}\)
\(\widehat{ADB}=90^0\)
Do đó: AD⊥BC tại D
c)Ta có: BD=CD (vì D là trung điểm của BC)
Mà: BC=12cm (giả thiết)
lại có: BC=BD+CD
nên: \(BD=CD=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)
* Áp dụng định lí Pi-ta-go vào Δ ADC vuông tại D có:
\(AC^2=AD^2+CD^2\)
\(10^2=AD^2+6^2\)
\(100=AD^2+36\)
\(AD^2=100-36\)
\(AD^2=64\)
\(AD=\sqrt{64}\left(AD>0\right)\)
Vậy: AD=8(cm)
d)Xét Δ BED vuông tại E và Δ CFD cân tại F có:
\(\widehat{B}=\widehat{C}\) (vì Δ ABC cân tại A)
\(BD=CD\) (vì D là trung điểm của BC)
Vậy: Δ BED =Δ CFD ( cạnh huyền_góc nhọn)
\(\Rightarrow DE=DF\) (hai cạnh tương ứng)
Do đó: Δ DEF cân tại D