Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A kể tiếp tuyến AM, AN tới đường tròn (O) (M, N là các tiếp điểm)
a) Chứng minh rằng tứ giác AMON nối tiếp.
b) Vẽ cát tuyến ABC tới đường tròn (O) ( Tia AO nằm giữa AM và AC ). Chứng minh rằng: AM\(^2\)= AB. AC
c) Gọi H là giao điểm của AO và MN. Chứng minh tứ giác BHOC nội tiếp.
d) Chứng minh rằng HN là tia phân giác của BHC.